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Executive Summary 

Discipulus™ is multiple-run, linear, genetic-programming software. Various ver-
sions have been available commercially since 1998 (see, www.aimlearning.com). 
Discipulus creates models directly from data, like neural networks or support vec-
tor machines. 

This white paper reports on the result of a multi-year study of the performance 
of Discipulus by Science Applications International Corp (SAIC) and RML Tech-
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nologies, Inc. This study compared Discipulus to several other powerful modeling 
tools on a wide variety of industrial problems including regression and classifica-
tion problems, CRM problems, time series problems, complex signal discrimina-
tion problems and others. 

We compared the modeling capability of Discipulus to the following competi-
tive modeling technologies:  

• Vapnick Statistical Learning,  
• Neural Networks,  
• Decision Trees, and  
• Rule-Based Systems. 

In brief summary, the other modeling tools performed inconsistently—
sometimes they produced very good results and sometimes mediocre or even very 
poor results. None of these tools produced high quality results across the board. In 
contrast, Discipulus (at its default settings) always produced results that were 
the same as or better than the best results from other modeling techniques. 

The results described in this white paper have all been previously published in 
peer-reviewed scientific publications. 
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Introduction 

Discipulus™ is multiple-run, linear, genetic-programming software. Various ver-
sions have been available commercially since 1998 (see, www.aimlearning.com). 
Discipulus creates models directly from data, like neural networks, decision-trees, 
or support vector machines. Genetic Programming software produces models in 
the form of computer programs. Discipulus, for example, creates models in C, 
Java and Intel inline assembler. 

This white paper reports on the result of a multi-year study of the performance 
of Discipulus by Science Applications International Corp (SAIC) and RML Tech-
nologies, Inc. 

This study compared Discipulus with several other powerful modeling tools on 
a wide variety of industrial problems including regression and classification prob-
lems, CRM problems, time series problems, complex signal discrimination prob-
lems and others. We compared the quality of models produced by Discipulus with 
the following competitive modeling tools:  

• Support Vector Machines/Vapnick Statistical Learning,  
• Neural Networks,  
• Decision Trees, and  
• Human Experts. 

This white paper is organized as follows: 
First: we briefly describe machine-code-based, linear genetic programming 

(LGP) in detail and the Discipulus software, in particular; and 
Second: we detail the results of a three-year study of the performance of Dis-

cipulus as compared to the performance of these other powerful modeling tools. 
The study occurred in two phases:  

• Phase I. LGP modeling was performed with Discipulus Lite and Discipulus 
Standard Versions.  

• Phase II. LGP modeling was performed with  Discipulus Professional Ver-
sion. 

Finally, we conclude with a summary of our results. 

Linear Genetic Programming with Discipulus 

Genetic Programming (GP) is the automatic, computerized creation of computer 
programs to perform a selected task using Darwinian natural selection. GP devel-
opers give their computers examples of how they want the computer to perform a 
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task. GP software then writes a computer program that performs the task described 
by the examples. 
GP is a robust, dynamic, and quickly growing discipline. It has been applied to di-
verse problems with great success—equaling or exceeding the best human-created 
solutions to many difficult problems [14,3,4,2]. 

This paper presents approximately three years of analysis of machine-code-
based, LGP. To perform the analyses, we used the Lite, Standard and Professional 
Versions an off-the-shelf commercial software package called Discipulus™ [22]. 
Discipulus is a LGP system that operates directly on machine code. 

Genetic Programming 

Good, detailed treatments of Genetic Programming may be found in [2,14]. In 
brief summary, the LGP algorithm in Discipulus is surprisingly simple. It starts 
with a population of randomly generated computer programs. These programs are 
the “primordial soup” on which computerized evolution operates. Then, GP con-
ducts a “tournament” by selecting four programs from the population—also at 
random—and measures how well each of the four programs performs the task des-
ignated by the GP developer. The two programs that perform the task best “win” 
the tournament. 

The GP algorithm then copies the two winner programs and transforms these 
copies into two new programs via crossover and mutation transformation opera-
tors—in short, the winners have “children.” These two new child programs are 
then inserted into the population of programs, replacing the two loser programs 
from the tournament. GP repeats these simple steps over and over until it has writ-
ten a program that performs the selected task.   

GP creates its “child” programs by transforming the tournament winning pro-
grams. The transformations used are inspired by biology. For example, the GP 
mutation operator transforms a tournament winner by changing it randomly—the 
mutation operator might change an addition instruction in a tournament winner to 
a multiplication instruction. Likewise, the GP crossover operator causes instruc-
tions from the two tournament winning programs to be swapped—in essence, an 
exchange of genetic material between the winners. GP crossover is inspired by the 
exchange of genetic material that occurs in sexual reproduction in biology. 

Configuration Issues in Performing Multiple LGP Runs 

Our investigation into exploiting the multiple run capability of machine-code-
based LGP had two phases—largely defined by software versioning.  We started 
with Discipulus Lite and Discipulus Standard. These versions of Discipulus permit 
multiple runs, but only with user-predefined parameter settings.   

As a result, our early multiple run efforts (described below as our Phase I inves-
tigation) just chose a range of reasonable values for key parameters, estimated an 
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appropriate termination criterion for the runs, and conducted a series of runs at 
those selected parameter settings. For example, the chart of the LGP results on the 
incinerator CO2 data sets (Fig. 2) was the result of doing 30 runs using different 
settings for the mutation parameter. 

By way of contrast, the second phase of our investigation was enabled by four, 
key capabilities introduced into Discipulus Professional Version and up. Those 
capabilities were: 

− The ability to perform multiple runs with randomized parameter settings from 
run to run; 

− The ability to conduct hillclimbing through LGP parameter space based on the 
results of previous runs; 

− The ability to automatically assemble teams of models during a project that, in 
general, perform better than individual models; and 

− The ability to determine an appropriate termination criterion for runs, for a par-
ticular problem domain, by starting a project with short runs and automatically 
increasing the length of the runs until longer runs stop yielding better results. 

Accordingly, the results reported below as part of our Phase II investigation are 
based on utilizing these additional four capabilities of Discipulus Professional 
Version. 

Discipulus Investigation—Phase I 

We tested Discipulus Lite and Standard software on a number of problem domains 
during this first phase of our investigation. This Phase I investigation covered 
about two years and is reported in the next three sections. 

Deriving Physical Laws 

Science Applications International Corporation’s (SAIC’s) interest in LGP was 
initially based on its potential ability to model physical relationships. So the first 
test for LGP to see if it could model the well-known (to environmental engineers, 
at least) Darcy’s Law. Darcy’s Law describes the flow of water through porous 
media. The equation is: 

Q=K*I*A, (1) 

where Q = flow [L3/T], K = hydraulic conductivity [L/T], I = gradient [L/L], and 
A = area [L2].  
We generated a realistic input set and then used Darcy’s law to produce outputs. 
We then added 10% random variation to the inputs and outputs, and ran the LGP 
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software on these data. After completing our runs, we examined the best program 
it produced. 

The best solution derived by the LGP software from these data was a four-
instruction program that is precisely Darcy’s Law, represented in ANSI C as: 

Q = 0.0 

Q += I 

Q *= K 

Q *= A 

In this LGP evolved program, Q is an accumulator variable that is also the final 
output of the evolved program. 

This program model of Darcy's Law was derived as follows. First, it was 
evolved by LGP. The “raw” LGP solution was accurate though somewhat unintel-
ligible. By using intron removal [19] with heuristics and evolutionary strategies to 
simplify and optimize the evolved solution, the specific form of Darcy’s Law was 
evolved. This process is coded in the LGP software; we used the “Interactive 
Evaluator” module, which links to the “Intron Removal” and automatic “Simplifi-
cation” and “Optimization” functions. These functions combine heuristics and ES 
optimization to derive simpler versions of the programs that LGP evolves [22]. 

Incinerator Process Simulation 

The second LGP test SAIC performed was the prediction of CO2 concentrations 
in the secondary combustion chamber of an incinerator plant from process meas-
urements from plant operation. The inputs were various process parameters (e.g., 
fuel oil flow, liquid waste flow, etc.) and the plant control settings. The ability to 
make this prediction is important because the CO2 concentration strongly affects 
regulatory compliance. 

This problem was chosen because it had been investigated using neural net-
works. Great difficulty was encountered in deriving any useful neural network 
models for this problem during a well-conducted study [5].  

The incinerator to be modeled processed a variety of solid and aqueous waste, 
using a combination of a rotary kiln, a secondary combustion chamber, and an off-
gas scrubber. The process is complex and consists of variable fuel and waste in-
puts, high temperatures of combustion, and high velocity off-gas emissions. 

To set up the data, a zero and one hour off-set for the data was used to construct 
the training and validation instance sets. This resulted in a total of 44 input vari-
ables. We conducted 30 LGP runs for a period of 20 hours each, using 10 different 
random seeds for each of three mutation rates (0.10, 0.50, 0.95) [3].  The stopping 
criterion for all simulations was 20 hours. All 30 runs together took 600 hours to 
run. 
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Two of the LGP runs produced excellent results. The best run showed a valida-
tion data set R2 fitness of 0.961 and an R2 fitness of 0.979 across the entire data 
set. 

The two important results here were: (1) LGP produced a solution that could 
not be obtained using Neural Networks; and (2) Only two of the 30 runs produced 
good solutions (see Fig. 2), so we would expect to have to conduct all 30 runs to 
solve the problem again. 

Data Memorization Test 

The third test SAIC performed was to see whether the LGP algorithm was memo-
rizing data, or actually learning relationships. 

SAIC constructed a known, chaotic time series based on the combination of 
drops of colored water making their way through a cylinder of mineral oil. The 
time series used was constructed via a physical process experimental technique 
discussed in [24].  

The point of constructing these data was an attempt to deceive the LGP soft-
ware into predicting an unpredictable relationship, that is, the information content 
of the preceding values from the drop experiment are not sufficient to predict the 
next value. Accordingly, if the LGP technique found a relationship on this chaotic 
series, it would have found a false relationship and its ability to generalize rela-
tionships from data would be suspect. 

The LGP was configured to train on a data set as follows:  

− The inputs were comprised of eight consecutive values from the drop data; and  
− The target output was the next-in-sequence value of the drop data.  

Various attempts were tried to trick the LGP technique, including varying pa-
rameters such as the instructions that were available for evolving the solution.  

The results of this memorization test are shown on Fig. 4. The “step” function 
shown in Fig. 4 represents the measured drop data, sorted by value. The noisy data 
series is the output of the best LGP model of the drop data. 
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It is clear that the LGP algorithm was not fooled by this data set. It evolved a 

program that was approximately a linear representation of the average value of the 
data set. But it did not memorize or fit the noise. 

Discipulus Study—Phase II 

Phase II of our investigation started when we began using the Professional Ver-
sion of Discipulus [22]. As noted above, this new version automated many aspects 
of conducting multiple runs, including automatically randomizing run parameters, 
hillclimbing to optimize run parameters, automatic determination of the appropri-
ate termination criterion for LGP for a particular problem domain, and automatic 
creation of team solutions. 

Incinerator Problem, Phase II 

SAIC used the new software version and re-ran the R&D problem involving CO2 
level prediction for the incinerator plant problem (described above). A total of 
901,983,797 programs were evaluated to produce the best 30 programs.  

Fig. 1. Attempt to model 
a chaotic time series 
with Linear Genetic 
Programming. 
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The enhanced LGP algorithm modeled the Incinerator plant CO2 levels with 

better accuracy and much more rapidly than earlier versions. The validation-data-
set, seven-team, R2 fitness was 0.985 as opposed to 0.961 previously achieved by 
multiple single runs. The CPU time for the new algorithm was 67 hours (using a 
PIII-800 MHz/100 MHz FSB machine), as opposed to 600 hours (using a PIII 
533 MHz /133 FSB machine) that was needed in Phase I. It is important to note 
that the team solution approach was important in developing a better solution in 
less time. 

UXO Discrimination 

The preceding examples are regression problems. The enhanced LGP algorithm 
was also tested during Phase II on a difficult classification problem–the determi-
nation of the presence of subsurface unexploded ordnance (UXO).  

The Department of Defense has been responsible for conducting UXO investi-
gations at many locations around the world.  These investigations have resulted in 
the collection of extraordinary amounts of geophysical data with the goal of iden-
tifying buried UXO.   

Evaluation of UXO/non-UXO data is time consuming and costly.  The standard 
outcome of these types of evaluations is maps showing the location of geophysical 
anomalies.  In general, what these anomalies may be (i.e., UXO, non-UXO, boul-
ders, etc.) cannot be determined without excavation at the location of the anomaly.   

The Department of Defense has prepared ‘test-beds’ for testing performance of 
contractors in distinguishing UXO from non-UXO. The Jefferson Proving 
Grounds Phase IV test-bed consists of 160 buried targets. Ten contractors were 
engaged by the DoD to survey this test-bed with magnetic or electromagnetic sen-
sors and then tell the DoD whether each target was UXO or not. The various con-
tractors collected data and then submitted the data to their geophysicists who are 
experts at UXO discrimination.  

Figure 1 shows the published performance of the ten contractors [13]. The hori-
zontal axis shows the performance of each contractor in correctly identifying 
points that did not contain buried UXO. The vertical axis shows the performance 
of each algorithm in correctly identifying points that did contain buried UXO. The 
angled line in Fig. 1 represents what would be expected from random guessing. 

Fig. 2. Distribution of 
30 Best LGP Runs us-
ing Randomized Run 
Parameters for 300 
Runs on Incinerator 
Problem 
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Figure 1 points out the difficulty of modeling these data. Most contractors did 
little better than random guessing; however, the LGP algorithm derived a best-
know model for correctly identifying UXO’s and for correctly rejecting non-
UXO’s using various data set configurations [5,13]. The triangle in the upper right 
hand corner of Fig. 1 shows the range of LGP solutions in these different configu-
rations. 
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Eight-Problem Comparative Study 

In 2001, we concluded Phase II of our LGP study with a comparative study using 
machine-code-based, Linear Genetic Programming, back-propagation neural net-
works, Vapnick Statistical Regression/Support Vector Machines [28], and C5.0 
Decision Trees [21] on a suite of real-world, modeling problems.  

The test suite included six regression problems and two classification problems. 
LGP and Vapnick Statistical Regression were used on all problems. In addition, 
on regression problems, Neural Networks were used and on classification prob-
lems, C5.0 was used.  

In summary, each algorithm was trained on the same data as the others and was 
also tested on the same held-out data as the others.  The figures reported below are 
the performance on the held-out, testing data. Each algorithm was run so as to 
maximize its performance, except that the LGP system was run at its default pa-
rameters in each case. 

Classification Data Sets Results  
Table 1 reports the comparative classification error rates of the best LGP, Vapnick 
Regression, and C5.0 results on the classification suite of problems on the held-
out, testing data. 

Fig. 1. LGP and Ten 
other Contractors Re-
sults on JPG-IV UXO 
Discrimination Data 
[13] 
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Table 1.  Comparison of Error Rates of Best LGP, C5.0, and Vapnick Regression Results  
on Unseen Data for Two Industrial Classification Data Sets.  

Problem Linear Genetic 
Programming 

C5.0 Decision Tree Vapnick Regression 

Company H Spam Filter 

 
3.2% 8.5% 9.1% 

Predict Income from 
Census Data 

14% 14.5% 15.4% 

Regression Data Sets Results 
Table 2 summarizes the R2 performance of the three modeling systems across the 
suite of regression problems on the held-out testing data. 

Table 2.  Comparison of LGP, Neural Networks and Vapnick Regression on Six Industrial 
Regression Problems. Value Shown is the R2 Value on Unseen Data Showing Correlation 
between the Target Function and the Model’s Predictions. Higher Values are Better. 

Problem Linear Genetic 
Programming 

Neural Network Vapnick 
Regression 

Dept. of Energy, Cone 
Penetremeter,  

0.72 0.618 0.68 

Kodak, Software 
Simulator 

0.99 0.9509 0.80 

Company D, Chemical 
Batch Process Control 

0.72 0.63 0.72 

Laser Output Predic-
tion 

0.99 0.96 0.41 

Tokamak 1 0.99 0.55 N/A 

Tokamak 2 0.44 .00 .12 

Two Examples from the Eight-Problem Study 
This section will discuss two examples of results from the eight-problem compari-
son study—the Laser Output prediction data and the Kodak Simulator data. 

Laser Output Problem. This data set comprises about 19,000 data points with 
25 inputs. This is sequential data so the last 2,500 data points were held out for 
testing. The problem is to predict the output level of a ruby laser, using only pre-
viously measured outputs. 

This is easy data set on which to generate a decent R2 value; but it is very diffi-
cult to model the phase with precision. Most modeling tools pick up the strong pe-
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riodic element but have a difficult time matching the phase and/or frequency com-
ponents—they generate their solutions by lagging the actual output by several cy-
cles. Figures 2 and 3 show the output of Vapnick Regression and LGP, respec-
tively, plotted against a portion of the unseen laser testing data.  

Figure 2 is the result from the Vapnick tool. It picks up the strong periodic ele-
ment but critically, the predicted output lags behind the actual output by a few cy-
cles.  By way of contrast, Figure 3 shows the results from LGP modeling. Note the 
almost perfect phase coherence of the LGP solution and the actual output of the 
laser both before and after the phase change. The phase-accuracy of the LGP 
models is what resulted in such a high R2 for the LGP models, compared to the 
others. 
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Simulating a Simulator.  In the Kodak Simulator problem, the task was to use 
LGP to simulate an existing software simulator.  Past runs of the existing simula-
tor provided many matched pairs of inputs (five production related variables) and 
the output from [23]. The data set consisted of 7,547 simulations of the output of a 
chemical batch process, given the five input variables common to making produc-

Fig. 2. Best 
Vapnick Re-
gression Model 
on Laser Prob-
lem (Light 
Gray Line) 
Compared to 
Target Output 
(Heavy Line) 
on Held-Out, 
Data 

Fig. 3. Best 
LGP Model 
(Light Gray 
Line) on Laser 
Problem Com-
pared to Target 
Output (Dark 
Line) on Held-
Out, Testing 
Data 
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tion decisions. Of these data points, 2,521 were held out of training for testing the 
model. 

The results on the testing or held-out data for LGP, Vapnick Regression, and 
neural networks are reported in Table 2. Figures 4 and 5 graph the LGP and Vap-
nick Models against the target data. 

The LGP solution (Figure 5) so closely models the Target Output that the pre-
dictions completely obscure the target output line. In fact, for all but six of the 
2,521 data points, the agreement between the LGP prediction and the actual value 
is very good. The R2 fitness on the applied data set for the best team solution was 
0.9889. (A second batch of 232 LGP runs achieved a similar R2 fitness on the ap-
plied data set of 0.9814, using a team of seven programs. The range of R2 for the 
top 30 programs of this second batch was 0.9707 to 0.9585. This demonstrates 
analysis repeatability using LGP.) 

The Vapnick (Figure 4) and Neural Network solutions were not nearly so 
close—the R2 for the Vapnick Model was only 0.80, for example. 
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Fig. 4.  Best 
Vapnick Pre-
dictions of 
Kodak Simula-
tor Data (light-
gray series) vs. 
the Target 
Data (dark 
line) on Held-
out Data. 

Fig. 5.  Best 
LGP Model of 
Company K 
Simulator 
Problem (light 
gray series) vs 
Target Data 
(dark series) on 
the Held-out 
Data.  
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Conclusion Regarding Empirical Studies 

The key results of the two phases of our empirical studies of the LGP algorithm 
are as follows. 

First: Discipulus consistently produces excellent results on difficult, industrial 
modeling problems with little customization of the learning algorithm. Note: it did 
not always produce better results than all other algorithms studied.  However, on 
every problem studied, LGP produced a model that was as good as, or better than, 
any other approach. 

The performance of other learning algorithms was decidedly up-and-down. For 
example, Vapnick Regression did quite well on the Cone Penetrometer and Com-
pany D data but quite poorly on the laser and Company K problems. Neural Net-
works did quite well on the laser and Company K problems but not so well on the 
Tokamak and incinerator CO2 data sets. C5.0 did well on the census problem but 
not well on the spam filter problem. 

Our comfort level that LGP will arrive at a good solution to most problems 
without customization or ‘tweaking” is one of the principal reasons we have set-
tled on LGP as our modeling algorithm of choice for complex and difficult model-
ing problems. 

Second: Discipulus produces robust models compared to other learning algo-
rithms. Much less attention had to be paid to overfitting problems with Discipulus 
than with other algorithms. This is not to say that LGP will never overfit data. 
Give the right data set, it will. But it does so less frequently than the Neural Net-
work, Vapnick Regression, and C5.0 alternatives we studied 

Discipulus identifies which are the important inputs, and which are not. For ex-
ample, we screened a wastewater treatment plant with 54 inputs and identified 7 
important ones. This reduces the number of inputs to monitor, allows assessment 
of what will happen if an input goes off-line (for security and contingency plan-
ning), and enhances accelerated optimization by reducing the number of decision 
variables, as discussed below. 
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