

 1

White Paper

Comparison of Discipulus™ Linear Genetic Programming Soft-
ware with Support Vector Machines, Classification Trees, Neural

Networks and Human Experts

Larry M. Deschaine1

Frank D. Francone2

Executive Summary

Discipulus™ is multiple-run, linear, genetic-programming software. Various ver-
sions have been available commercially since 1998 (see, www.aimlearning.com).
Discipulus creates models directly from data, like neural networks or support vec-
tor machines.

This white paper reports on the result of a multi-year study of the performance
of Discipulus by Science Applications International Corp (SAIC) and RML Tech-

1 Mr. Deschaine is an Engineering Physicist at Science Applications International Corp. He

has published about 80 works in the open literature on three continents in multiple lan-
guages (including journals, book chapters and conference proceedings). He invented the
UXO/MineFinder in 2001 for SAIC. He recently received a "job well done" medal from
Fort Knox for the work he presented on UXO and plume finding, optimal remedial de-
sign, provable TI determination and optimal long term monitoring.

 He has eighteen national and international awards for his work. These include back-to-
back world records in underground construction (horizontal bioairsparge wells) that
achieved in excess of a 40% cost savings ($1.84M) in remediation. He received a citation
from the Vice-President of the United States for leading the development of an algorithm
which saved $90M over a five year period.

2 Frank Francone has been President of RML Technologies, Inc. since 1996. As such, he
designed and marketed the world's first, and still best selling, Genetic Programming
software, Discipulus™. He also leads RML's consulting business in data analysis and so-
lutions. That practice concentrates on business applications of evolutionary computation,
genetic programming, optimization, risk analysis, and statistics.

 In addition to his business interests, as one of the authors of the leading university text-
book on Genetic Programming, he is a well known research scientist. His many articles
on Genetic Programming, Machine Learning, data analysis, and UXO cleanup have ap-
peared in scientific journals, trade magazines, and conference proceedings since 1995.

 2

nologies, Inc. This study compared Discipulus to several other powerful modeling
tools on a wide variety of industrial problems including regression and classifica-
tion problems, CRM problems, time series problems, complex signal discrimina-
tion problems and others.

We compared the modeling capability of Discipulus to the following competi-
tive modeling technologies:

• Vapnick Statistical Learning,
• Neural Networks,
• Decision Trees, and
• Rule-Based Systems.

In brief summary, the other modeling tools performed inconsistently—
sometimes they produced very good results and sometimes mediocre or even very
poor results. None of these tools produced high quality results across the board. In
contrast, Discipulus (at its default settings) always produced results that were
the same as or better than the best results from other modeling techniques.

The results described in this white paper have all been previously published in
peer-reviewed scientific publications.

 3

Introduction

Discipulus™ is multiple-run, linear, genetic-programming software. Various ver-
sions have been available commercially since 1998 (see, www.aimlearning.com).
Discipulus creates models directly from data, like neural networks, decision-trees,
or support vector machines. Genetic Programming software produces models in
the form of computer programs. Discipulus, for example, creates models in C,
Java and Intel inline assembler.

This white paper reports on the result of a multi-year study of the performance
of Discipulus by Science Applications International Corp (SAIC) and RML Tech-
nologies, Inc.

This study compared Discipulus with several other powerful modeling tools on
a wide variety of industrial problems including regression and classification prob-
lems, CRM problems, time series problems, complex signal discrimination prob-
lems and others. We compared the quality of models produced by Discipulus with
the following competitive modeling tools:

• Support Vector Machines/Vapnick Statistical Learning,
• Neural Networks,
• Decision Trees, and
• Human Experts.

This white paper is organized as follows:
First: we briefly describe machine-code-based, linear genetic programming

(LGP) in detail and the Discipulus software, in particular; and
Second: we detail the results of a three-year study of the performance of Dis-

cipulus as compared to the performance of these other powerful modeling tools.
The study occurred in two phases:

• Phase I. LGP modeling was performed with Discipulus Lite and Discipulus
Standard Versions.

• Phase II. LGP modeling was performed with Discipulus Professional Ver-
sion.

Finally, we conclude with a summary of our results.

Linear Genetic Programming with Discipulus

Genetic Programming (GP) is the automatic, computerized creation of computer
programs to perform a selected task using Darwinian natural selection. GP devel-
opers give their computers examples of how they want the computer to perform a

 4

task. GP software then writes a computer program that performs the task described
by the examples.
GP is a robust, dynamic, and quickly growing discipline. It has been applied to di-
verse problems with great success—equaling or exceeding the best human-created
solutions to many difficult problems [14,3,4,2].

This paper presents approximately three years of analysis of machine-code-
based, LGP. To perform the analyses, we used the Lite, Standard and Professional
Versions an off-the-shelf commercial software package called Discipulus™ [22].
Discipulus is a LGP system that operates directly on machine code.

Genetic Programming

Good, detailed treatments of Genetic Programming may be found in [2,14]. In
brief summary, the LGP algorithm in Discipulus is surprisingly simple. It starts
with a population of randomly generated computer programs. These programs are
the “primordial soup” on which computerized evolution operates. Then, GP con-
ducts a “tournament” by selecting four programs from the population—also at
random—and measures how well each of the four programs performs the task des-
ignated by the GP developer. The two programs that perform the task best “win”
the tournament.

The GP algorithm then copies the two winner programs and transforms these
copies into two new programs via crossover and mutation transformation opera-
tors—in short, the winners have “children.” These two new child programs are
then inserted into the population of programs, replacing the two loser programs
from the tournament. GP repeats these simple steps over and over until it has writ-
ten a program that performs the selected task.

GP creates its “child” programs by transforming the tournament winning pro-
grams. The transformations used are inspired by biology. For example, the GP
mutation operator transforms a tournament winner by changing it randomly—the
mutation operator might change an addition instruction in a tournament winner to
a multiplication instruction. Likewise, the GP crossover operator causes instruc-
tions from the two tournament winning programs to be swapped—in essence, an
exchange of genetic material between the winners. GP crossover is inspired by the
exchange of genetic material that occurs in sexual reproduction in biology.

Configuration Issues in Performing Multiple LGP Runs

Our investigation into exploiting the multiple run capability of machine-code-
based LGP had two phases—largely defined by software versioning. We started
with Discipulus Lite and Discipulus Standard. These versions of Discipulus permit
multiple runs, but only with user-predefined parameter settings.

As a result, our early multiple run efforts (described below as our Phase I inves-
tigation) just chose a range of reasonable values for key parameters, estimated an

 5

appropriate termination criterion for the runs, and conducted a series of runs at
those selected parameter settings. For example, the chart of the LGP results on the
incinerator CO2 data sets (Fig. 2) was the result of doing 30 runs using different
settings for the mutation parameter.

By way of contrast, the second phase of our investigation was enabled by four,
key capabilities introduced into Discipulus Professional Version and up. Those
capabilities were:

− The ability to perform multiple runs with randomized parameter settings from
run to run;

− The ability to conduct hillclimbing through LGP parameter space based on the
results of previous runs;

− The ability to automatically assemble teams of models during a project that, in
general, perform better than individual models; and

− The ability to determine an appropriate termination criterion for runs, for a par-
ticular problem domain, by starting a project with short runs and automatically
increasing the length of the runs until longer runs stop yielding better results.

Accordingly, the results reported below as part of our Phase II investigation are
based on utilizing these additional four capabilities of Discipulus Professional
Version.

Discipulus Investigation—Phase I

We tested Discipulus Lite and Standard software on a number of problem domains
during this first phase of our investigation. This Phase I investigation covered
about two years and is reported in the next three sections.

Deriving Physical Laws

Science Applications International Corporation’s (SAIC’s) interest in LGP was
initially based on its potential ability to model physical relationships. So the first
test for LGP to see if it could model the well-known (to environmental engineers,
at least) Darcy’s Law. Darcy’s Law describes the flow of water through porous
media. The equation is:

Q=K*I*A, (1)

where Q = flow [L3/T], K = hydraulic conductivity [L/T], I = gradient [L/L], and
A = area [L2].
We generated a realistic input set and then used Darcy’s law to produce outputs.
We then added 10% random variation to the inputs and outputs, and ran the LGP

 6

software on these data. After completing our runs, we examined the best program
it produced.

The best solution derived by the LGP software from these data was a four-
instruction program that is precisely Darcy’s Law, represented in ANSI C as:

Q = 0.0

Q += I

Q *= K

Q *= A

In this LGP evolved program, Q is an accumulator variable that is also the final
output of the evolved program.

This program model of Darcy's Law was derived as follows. First, it was
evolved by LGP. The “raw” LGP solution was accurate though somewhat unintel-
ligible. By using intron removal [19] with heuristics and evolutionary strategies to
simplify and optimize the evolved solution, the specific form of Darcy’s Law was
evolved. This process is coded in the LGP software; we used the “Interactive
Evaluator” module, which links to the “Intron Removal” and automatic “Simplifi-
cation” and “Optimization” functions. These functions combine heuristics and ES
optimization to derive simpler versions of the programs that LGP evolves [22].

Incinerator Process Simulation

The second LGP test SAIC performed was the prediction of CO2 concentrations
in the secondary combustion chamber of an incinerator plant from process meas-
urements from plant operation. The inputs were various process parameters (e.g.,
fuel oil flow, liquid waste flow, etc.) and the plant control settings. The ability to
make this prediction is important because the CO2 concentration strongly affects
regulatory compliance.

This problem was chosen because it had been investigated using neural net-
works. Great difficulty was encountered in deriving any useful neural network
models for this problem during a well-conducted study [5].

The incinerator to be modeled processed a variety of solid and aqueous waste,
using a combination of a rotary kiln, a secondary combustion chamber, and an off-
gas scrubber. The process is complex and consists of variable fuel and waste in-
puts, high temperatures of combustion, and high velocity off-gas emissions.

To set up the data, a zero and one hour off-set for the data was used to construct
the training and validation instance sets. This resulted in a total of 44 input vari-
ables. We conducted 30 LGP runs for a period of 20 hours each, using 10 different
random seeds for each of three mutation rates (0.10, 0.50, 0.95) [3]. The stopping
criterion for all simulations was 20 hours. All 30 runs together took 600 hours to
run.

 7

Two of the LGP runs produced excellent results. The best run showed a valida-
tion data set R2 fitness of 0.961 and an R2 fitness of 0.979 across the entire data
set.

The two important results here were: (1) LGP produced a solution that could
not be obtained using Neural Networks; and (2) Only two of the 30 runs produced
good solutions (see Fig. 2), so we would expect to have to conduct all 30 runs to
solve the problem again.

Data Memorization Test

The third test SAIC performed was to see whether the LGP algorithm was memo-
rizing data, or actually learning relationships.

SAIC constructed a known, chaotic time series based on the combination of
drops of colored water making their way through a cylinder of mineral oil. The
time series used was constructed via a physical process experimental technique
discussed in [24].

The point of constructing these data was an attempt to deceive the LGP soft-
ware into predicting an unpredictable relationship, that is, the information content
of the preceding values from the drop experiment are not sufficient to predict the
next value. Accordingly, if the LGP technique found a relationship on this chaotic
series, it would have found a false relationship and its ability to generalize rela-
tionships from data would be suspect.

The LGP was configured to train on a data set as follows:

− The inputs were comprised of eight consecutive values from the drop data; and
− The target output was the next-in-sequence value of the drop data.

Various attempts were tried to trick the LGP technique, including varying pa-
rameters such as the instructions that were available for evolving the solution.

The results of this memorization test are shown on Fig. 4. The “step” function
shown in Fig. 4 represents the measured drop data, sorted by value. The noisy data
series is the output of the best LGP model of the drop data.

 8

It is clear that the LGP algorithm was not fooled by this data set. It evolved a

program that was approximately a linear representation of the average value of the
data set. But it did not memorize or fit the noise.

Discipulus Study—Phase II

Phase II of our investigation started when we began using the Professional Ver-
sion of Discipulus [22]. As noted above, this new version automated many aspects
of conducting multiple runs, including automatically randomizing run parameters,
hillclimbing to optimize run parameters, automatic determination of the appropri-
ate termination criterion for LGP for a particular problem domain, and automatic
creation of team solutions.

Incinerator Problem, Phase II

SAIC used the new software version and re-ran the R&D problem involving CO2
level prediction for the incinerator plant problem (described above). A total of
901,983,797 programs were evaluated to produce the best 30 programs.

Fig. 1. Attempt to model
a chaotic time series
with Linear Genetic
Programming.

 9

0

5

10

15

20

25

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

R2 Values - Top 30 Runs

N
um

be
r o

f S
ol

ut
io

ns

The enhanced LGP algorithm modeled the Incinerator plant CO2 levels with

better accuracy and much more rapidly than earlier versions. The validation-data-
set, seven-team, R2 fitness was 0.985 as opposed to 0.961 previously achieved by
multiple single runs. The CPU time for the new algorithm was 67 hours (using a
PIII-800 MHz/100 MHz FSB machine), as opposed to 600 hours (using a PIII
533 MHz /133 FSB machine) that was needed in Phase I. It is important to note
that the team solution approach was important in developing a better solution in
less time.

UXO Discrimination

The preceding examples are regression problems. The enhanced LGP algorithm
was also tested during Phase II on a difficult classification problem–the determi-
nation of the presence of subsurface unexploded ordnance (UXO).

The Department of Defense has been responsible for conducting UXO investi-
gations at many locations around the world. These investigations have resulted in
the collection of extraordinary amounts of geophysical data with the goal of iden-
tifying buried UXO.

Evaluation of UXO/non-UXO data is time consuming and costly. The standard
outcome of these types of evaluations is maps showing the location of geophysical
anomalies. In general, what these anomalies may be (i.e., UXO, non-UXO, boul-
ders, etc.) cannot be determined without excavation at the location of the anomaly.

The Department of Defense has prepared ‘test-beds’ for testing performance of
contractors in distinguishing UXO from non-UXO. The Jefferson Proving
Grounds Phase IV test-bed consists of 160 buried targets. Ten contractors were
engaged by the DoD to survey this test-bed with magnetic or electromagnetic sen-
sors and then tell the DoD whether each target was UXO or not. The various con-
tractors collected data and then submitted the data to their geophysicists who are
experts at UXO discrimination.

Figure 1 shows the published performance of the ten contractors [13]. The hori-
zontal axis shows the performance of each contractor in correctly identifying
points that did not contain buried UXO. The vertical axis shows the performance
of each algorithm in correctly identifying points that did contain buried UXO. The
angled line in Fig. 1 represents what would be expected from random guessing.

Fig. 2. Distribution of
30 Best LGP Runs us-
ing Randomized Run
Parameters for 300
Runs on Incinerator
Problem

 10

Figure 1 points out the difficulty of modeling these data. Most contractors did
little better than random guessing; however, the LGP algorithm derived a best-
know model for correctly identifying UXO’s and for correctly rejecting non-
UXO’s using various data set configurations [5,13]. The triangle in the upper right
hand corner of Fig. 1 shows the range of LGP solutions in these different configu-
rations.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Percent of Correct Non-UXO Discriminated [Better---->]

Pe
rc

en
t o

f C
or

re
ct

 U
XO

 D
is

cr
im

in
at

ed
 [B

et
te

r-

>]

Geo-Centers
NAEVA

Naval Rsch

Geophex

Battelle

Applied
Physics

SC&A

ENSCO
ADI/Alpha

GTL

Line of no better
discrimination than guessing

LGP Solution

Eight-Problem Comparative Study

In 2001, we concluded Phase II of our LGP study with a comparative study using
machine-code-based, Linear Genetic Programming, back-propagation neural net-
works, Vapnick Statistical Regression/Support Vector Machines [28], and C5.0
Decision Trees [21] on a suite of real-world, modeling problems.

The test suite included six regression problems and two classification problems.
LGP and Vapnick Statistical Regression were used on all problems. In addition,
on regression problems, Neural Networks were used and on classification prob-
lems, C5.0 was used.

In summary, each algorithm was trained on the same data as the others and was
also tested on the same held-out data as the others. The figures reported below are
the performance on the held-out, testing data. Each algorithm was run so as to
maximize its performance, except that the LGP system was run at its default pa-
rameters in each case.

Classification Data Sets Results
Table 1 reports the comparative classification error rates of the best LGP, Vapnick
Regression, and C5.0 results on the classification suite of problems on the held-
out, testing data.

Fig. 1. LGP and Ten
other Contractors Re-
sults on JPG-IV UXO
Discrimination Data
[13]

 11

Table 1. Comparison of Error Rates of Best LGP, C5.0, and Vapnick Regression Results
on Unseen Data for Two Industrial Classification Data Sets.

Problem Linear Genetic
Programming

C5.0 Decision Tree Vapnick Regression

Company H Spam Filter

3.2% 8.5% 9.1%

Predict Income from
Census Data

14% 14.5% 15.4%

Regression Data Sets Results
Table 2 summarizes the R2 performance of the three modeling systems across the
suite of regression problems on the held-out testing data.

Table 2. Comparison of LGP, Neural Networks and Vapnick Regression on Six Industrial
Regression Problems. Value Shown is the R2 Value on Unseen Data Showing Correlation
between the Target Function and the Model’s Predictions. Higher Values are Better.

Problem Linear Genetic
Programming

Neural Network Vapnick
Regression

Dept. of Energy, Cone
Penetremeter,

0.72 0.618 0.68

Kodak, Software
Simulator

0.99 0.9509 0.80

Company D, Chemical
Batch Process Control

0.72 0.63 0.72

Laser Output Predic-
tion

0.99 0.96 0.41

Tokamak 1 0.99 0.55 N/A

Tokamak 2 0.44 .00 .12

Two Examples from the Eight-Problem Study
This section will discuss two examples of results from the eight-problem compari-
son study—the Laser Output prediction data and the Kodak Simulator data.

Laser Output Problem. This data set comprises about 19,000 data points with
25 inputs. This is sequential data so the last 2,500 data points were held out for
testing. The problem is to predict the output level of a ruby laser, using only pre-
viously measured outputs.

This is easy data set on which to generate a decent R2 value; but it is very diffi-
cult to model the phase with precision. Most modeling tools pick up the strong pe-

 12

riodic element but have a difficult time matching the phase and/or frequency com-
ponents—they generate their solutions by lagging the actual output by several cy-
cles. Figures 2 and 3 show the output of Vapnick Regression and LGP, respec-
tively, plotted against a portion of the unseen laser testing data.

Figure 2 is the result from the Vapnick tool. It picks up the strong periodic ele-
ment but critically, the predicted output lags behind the actual output by a few cy-
cles. By way of contrast, Figure 3 shows the results from LGP modeling. Note the
almost perfect phase coherence of the LGP solution and the actual output of the
laser both before and after the phase change. The phase-accuracy of the LGP
models is what resulted in such a high R2 for the LGP models, compared to the
others.

-0.5

0

0.5

1

1.5

2

2.5

1 6 11 16 21 26 31 36 41 46 51 56

0

0.5

1

1.5

2

2.5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

Simulating a Simulator. In the Kodak Simulator problem, the task was to use
LGP to simulate an existing software simulator. Past runs of the existing simula-
tor provided many matched pairs of inputs (five production related variables) and
the output from [23]. The data set consisted of 7,547 simulations of the output of a
chemical batch process, given the five input variables common to making produc-

Fig. 2. Best
Vapnick Re-
gression Model
on Laser Prob-
lem (Light
Gray Line)
Compared to
Target Output
(Heavy Line)
on Held-Out,
Data

Fig. 3. Best
LGP Model
(Light Gray
Line) on Laser
Problem Com-
pared to Target
Output (Dark
Line) on Held-
Out, Testing
Data

 13

tion decisions. Of these data points, 2,521 were held out of training for testing the
model.

The results on the testing or held-out data for LGP, Vapnick Regression, and
neural networks are reported in Table 2. Figures 4 and 5 graph the LGP and Vap-
nick Models against the target data.

The LGP solution (Figure 5) so closely models the Target Output that the pre-
dictions completely obscure the target output line. In fact, for all but six of the
2,521 data points, the agreement between the LGP prediction and the actual value
is very good. The R2 fitness on the applied data set for the best team solution was
0.9889. (A second batch of 232 LGP runs achieved a similar R2 fitness on the ap-
plied data set of 0.9814, using a team of seven programs. The range of R2 for the
top 30 programs of this second batch was 0.9707 to 0.9585. This demonstrates
analysis repeatability using LGP.)

The Vapnick (Figure 4) and Neural Network solutions were not nearly so
close—the R2 for the Vapnick Model was only 0.80, for example.

-0.5

0

0.5

1

1.5

2

-0.5

0

0.5

1

1.5

Fig. 4. Best
Vapnick Pre-
dictions of
Kodak Simula-
tor Data (light-
gray series) vs.
the Target
Data (dark
line) on Held-
out Data.

Fig. 5. Best
LGP Model of
Company K
Simulator
Problem (light
gray series) vs
Target Data
(dark series) on
the Held-out
Data.

 14

Conclusion Regarding Empirical Studies

The key results of the two phases of our empirical studies of the LGP algorithm
are as follows.

First: Discipulus consistently produces excellent results on difficult, industrial
modeling problems with little customization of the learning algorithm. Note: it did
not always produce better results than all other algorithms studied. However, on
every problem studied, LGP produced a model that was as good as, or better than,
any other approach.

The performance of other learning algorithms was decidedly up-and-down. For
example, Vapnick Regression did quite well on the Cone Penetrometer and Com-
pany D data but quite poorly on the laser and Company K problems. Neural Net-
works did quite well on the laser and Company K problems but not so well on the
Tokamak and incinerator CO2 data sets. C5.0 did well on the census problem but
not well on the spam filter problem.

Our comfort level that LGP will arrive at a good solution to most problems
without customization or ‘tweaking” is one of the principal reasons we have set-
tled on LGP as our modeling algorithm of choice for complex and difficult model-
ing problems.

Second: Discipulus produces robust models compared to other learning algo-
rithms. Much less attention had to be paid to overfitting problems with Discipulus
than with other algorithms. This is not to say that LGP will never overfit data.
Give the right data set, it will. But it does so less frequently than the Neural Net-
work, Vapnick Regression, and C5.0 alternatives we studied

Discipulus identifies which are the important inputs, and which are not. For ex-
ample, we screened a wastewater treatment plant with 54 inputs and identified 7
important ones. This reduces the number of inputs to monitor, allows assessment
of what will happen if an input goes off-line (for security and contingency plan-
ning), and enhances accelerated optimization by reducing the number of decision
variables, as discussed below.

Acknowledgments

The results presented in this work are part of a three-plus year collaborative effort
between SAIC and Register Machine Learning Technologies to advance the state
of the-art of evolutionary computation as applied to complex systems. Specifically
thanked for funding and latitude from SAIC are Joseph W. Craver, John Aucella,
and Janardan J. Patel. Dr. Gregory Flach, Dr. Frank Syms, and Mr. Robert Walton
are gratefully acknowledged for providing the input data sets used in some of the
work – as are the researchers who need to keep their identity confidential for busi-
ness reasons. Christopher R. Wellington -Ad Fontes Academy, Centreville, Vir-

 15

ginia conducted the chaotic drop experiment. All computations were performed
by, and responsibility for their accuracy lies with, the authors.

References

1. Banzhaf, W., Nordin, P., Keller, R., Francone, F. (1998) Genetic Programming, An In-
troduction, Morgan Kauffman Publishers, Inc., San Francisco, CA.

2. Deschaine, L.M., (2000) Tackling real-world environmental challenges with linear ge-
netic programming. PCAI Magazine, Volume 15, Number 5, September/October, pp.
35-37.

3. Deschaine, L.M., Patel, J.J., Guthrie, R.G., Grumski, J.T., and Ades, M.J. (2001) “Using
Linear Genetic Programming to Develop a C/C++ Simulation Model of a Waste Incin-
erator,” The Society for Modeling and Simulation International: Advanced Simulation
Technology Conference, Seattle, WA, USA April, ISBN: 1-56555-238-5, pages 41-48.

4. Deschaine, L.M., Hoover, R.A. Skibinski, J. (2002) “Using Machine Learning to Com-
plement and Extend the Accuracy of UXO Discrimination Beyond the Best Reported
Results at the Jefferson Proving Grounds,” (in press), Proceedings of Society for Mod-
eling and Simulation International, April.

5. Fausett, L.V. (2000). A Neural Network Approach to Modeling a Waste Incinerator Fa-
cility, Society for Computer Simulation’s Advanced Simulation Technology Confer-
ence, Washington, DC, USA April.

Francone, F. D., and Deschaine, L.M., Extending the Boundaries of Design Optimization
by Integrating Fast Optimization Techniques with Machine-Code-Based Linear Ge-
netic Programming, Information Sciences Journal, Elsevier Press, Vol. 161/3-4 pp 99-
120: 2004. Amsterdam, the Netherlands.

6. Francone, F., Nordin, P., and Banzhaf. W. (1996) Benchmarking the Generalization Ca-
pabilities of a Compiling Genetic Programming System Using Sparse Data Sets, In
Koza et al. Proceedings of the First Annual Conference on Genetic Programming,
Stanford, CA.

7. Fukunaga, A., Stechert, A., Mutz, D. (1998) A Genome Compiler for High Performance
Genetic Programming, in Proceedings of the Third Annual Genetic Programming Con-
ference, pp. 86-94, Morgan Kaufman Publishers, Jet Propulsion Laboratories, Califor-
nia Institute of Technology Pasadena, CA.

8. Government Accounting Office (2001) “DOD Training Range Clean-up Cost Estimates
are Likely Understated,” Report to House of Representatives on Environmental Li-
abilities, USA General Accounting Office, April, Report no. GAO 01 479.

9. Hansen, N., and Ostermeier, A. (2001) Completely Derandomized Self-Adaptation in
Evolution Strategies. In Evolutionary Computation 9(2): 159-195.

12. Jefferson Proving Grounds (1999) Jefferson Proving Grounds Phase IV Report: Graph
ES-1, May, Report No: SFIM-AEC-ET-CR-99051.

14. Koza, J., Bennet, F., Andre, D., and Keane, M. (1999) Genetic Programming III. Mor-
gan Kaufman, San Francisco, CA.

 16

15. Nordin, J.P. (1994) A Compiling Genetic Programming System that Directly Manipu-
lates the Machine Code. In Advances in Genetic Programming, K. Kinnear, Jr. (ed.),
Cambridge MA: MIT Press.

16. Nordin, J.P. (1999) Evolutionary Program Induction of Binary Machine Code and its
Applications, Krehl Verlag.

17. Nordin, J.P., Banzhaf , W. (1995) Complexity Compression and Evolution. In Proceed-
ings of Sixth International Conference of Genetic Algorithms, Morgan Kaufmann Pub-
lishers, Inc.

18. Nordin, J.P., Banzhaf, W. (1995) Evolving Turing Complete Programs for a Register
Machine with Self Modifying Code. In, Proceedings of Sixth International Conference
of Genetic Algorithms, Morgan Kaufmann Publishers, Inc.

19. Nordin, J.P., Francone, F., and Banzhaf, W. (1996) Explicitly Defined Introns and De-
structive Crossover in Genetic Programming. Advances in Genetic Programming 2, K.
Kinnear, Jr. (Editor), Cambridge MA: MIT Press.

20. Nordin, J.P., Francone, F., and Banzhaf, W. (1998) Efficient Evolution of Machine
Code for CISC Architectures Using Blocks and Homologous Crossover. In Advances
in Genetic Programming 3, MIT Press, Cambridge MA.

21. Quinlan, R. (1998) Data Mining Tools See5 and C5.0. ,Technical report, RuleQuest Re-
search.

22. Register Machine Learning Technologies, Inc. (2002) Discipulus Users Manual, Ver-
sion 3.0. Available at www.aimlearning.com.

23. Brian S. Rice and Robert L. Walton of Eastman, Kodak.Company, Industrial Produc-
tion Data Set.

24. Scientific American (November 1999). Drop Experiment to Demonstrate a Chaotic
Time Series.

28. Vapnick V. (1998) The Nature of Statistical Learning Theory, Wiley-Interscience Pub-
lishing.

