
 1

PREDICTION OF AUDITORS OPINION BASED ON

A CLEAN OPINION

Can hidden information be detected through an evolutionary approach?

 by

 Per-Anton Rønning

Summary in Norwegian

 2

Formålet med denne studien er å undersøke om en kan trene opp prediksjonsregler

ved hjelp av en evolusjonær tilnærming, som kan identifisere foretak der revisor vil finne

grunn til merknader i kommende år. Basis for prediksjonen er regnskapstall fra årsregnskapet

og kodede revisoranmerkninger. Regnskapene er valgt ut slik at de i prediksjonsåret er fri for

merknader, mens det i påfølgende er en eller annen revisormerknad (også inkludert “ingen

merknad”).

Problemstilingen er: Kan vi i en evolusjonær tilnærming avdekke informasjon i et

regnskap uten merknad som antyder problemer under utvikling, som revisor vil oppdage og

anmerke i det påfølgende år? I så fall vil en ha basis for et “Early warning” system som vil

være av betydning når en skal bedømme selskapets drift og utvikling. Dette kan både støtte

revisor i hans arbeid, samtidig som de interessenter som skal kredittvurdere selskapet har et

verktøy å støtte seg på. Revisoranmerkninger gir uttrykk for revisors oppfatning av selskapets

stilling og drift. Dersom disse anmerkningene er entydig negative, vil dette avspeile mulige

alvorlige finansielle problemer. Selskaper som er i en slik situasjon kan risikere å gå konkurs.

Situasjonen kan friste til økonomisk kriminelle handlinger, eller kan være resultat av slike

handlinger. Revisoranmerkningene vil aldri entydig kunne gi informasjon om hvilken

situasjon selskapet er i. Men de kan brukes som en proxy (tilnærming) på at noe er galt -

eventuelt som en proxy på at selskapet ikke har observerbare problemer.

Basert på 1994 som det valgte prediksjonsår forsøker studien å utvikle regler som kan

predikere for 1995 hvilke klasse av revisoranmerkning som vil bli gitt: Enten “intet vesentlig

å bemerke”, eller merkander som viser at der er forhold som revior ikke er tilfreds med.

En vil gjenom dette se om årsregnskapet inneholder informasjon som kan predikere

potensielle problemer, selv om revisor i inneværende år ikke har funnet noe å sette fingeren

på. I så fall vil både revisor ,bankenes kredittvurdering samt skattemyndighetene ha et nyttig

hjelpemiddel for å kunne velge ut bedrifter som bør settes på en observasjonsliste for tettere

oppfølging, før en kritisk situasjon oppstår. Tap kan begrenses ved at en i forkant observerer

potensielle problemer, og deretter går til nødvendige omstruktureringer for å løse dem. På

denne måten kan dette være et verktøy til å forebygge både konkurs og konkurskriminalitet,

eller annen økonomisk kriminalitet for den del.

Datamaterialet strekker seg fra 1988 til 1997, og er levert av Dun & Bradstreet. Det

foreligger kodede revisoranmerkninger for perioden 1992-1997.

1. Introduction

 3

The purpose of this study is to investigate the results of an evolutionary approach to

predicting auditors opinions in the “result year” based on financial statements in the “year of

prediction”. The financial statements in the prediction year are chosen among companies

where the auditor found that everything was in order. The financial statements in the result

year are organized in two classes: Class 0 contains companies with no serious remarks on the

part of the auditor, while class 1 contains companies that have received an explanatory

auditors opinion of some degree (see below). The idea behind this study is to examine

whether we can predict which class of auditors opinion (0,1) the company will belong to in

the result year, based on a prediction year financial statement belonging to class 0. If this is

successful, we have shown that there is some hidden information in the financial statements

that the genetic programming algoritms can be trained by evolution to make use of. The result

is a predicted opinion class in the result year with a degree of accuracy that is reasonably

satisfactory. A prediction hitrate of 50% is the poorest result to be expected. There is always

a 50-50% chance to be right. If we, based on this model can demonstrate hitrates, say 30 %

above this level (64-65%) , we will term this reasonably satisfactory. If this result is obtained,

we have tool of analysis which enables us to put class 1 companies on an observation list. The

auditor will then make a note of this, and start reexamining certain facts , and bring his results

of his examination to the attention of the management. This may be serious financial

problems in an early stage of development, it may be (perhaps weak) signs of possible

economic crime (systematic drain of cash hidden as ordinary business expenses, or just plain

embezzlement), it may be a situation that in the end will cause the company to go bankrupt.

At this early stage it will be difficult to determine the real causes behind the predicted results.

But placing the company on an observation list will enable the interested parties (owners,

board of directors, executive management, auditors, bankers, credit rating companies, tax

authorities., suppliers and so forth) to follow up the company more closely.

This study is employing genetic programming as an adaptive learning technology.

This means that rules for predicting possible problems in the year to come are evolved

gradually based on the ideas of evolution, i.e. natural selection, genetic crossover and

mutation. The rules providing the best fit, i.e. producing the greatest number of correct hits

will survive in the natural selection process. The mediocre or poor ones will be replaced by a

combination of their more successful competitors in a large population of such rules.

 Over the past 25 to 30 years much research has been done to develop models in order

to predict bankruptcy based on financial data. This effort is surveyed in Jones (1987).

Explicit prediction of bankruptcy is outside the scope of this study (it will be left to another

study) , but this topic has been studied at length, and should be surveyed briefly in this report.

 4

Altman (1968) introduced this field of research by employing discriminant analysis, and

since then it has been subject to extensive studies by means of a multitude of techniques,

such as: multivariate conditional probability models, recursive partitioning models, linear

programming, expert systems, neural networks, chaos theory and rough set theory (McKee,

1998). A common approach to develop such models is to review the literature to identify a

large set of financial or non financial variables with proven predictive power, and among

those, identify a reduced set. One might use either judgement or mathematical analysis to do

this, and the resulting set will then be input variables in the bankruptcy prediction model.

A problem is that many models have been built, using different variables and

different forms to specify the relationship between the variables. Although some models

predict accurately up to 90 % , no generally accepted model for bankruptcy prediction based

on underlying financial indicators has emerged so far. This failure seems to incur a significant

number of social costs due to bankruptcy, that might otherwise be avoided if a generally

applicable theory were available. (McKee, Lensberg, 1998)

 In our study, we let the evolutionary process perform a natural selection for us, i.e.

from one step to the next in the process of selecting a reduced set of critical variables, the

variables that were selected for inclusion in the model less than 4 out of 10 times over 10

independent runs is eliminated, and the remaining ones will be included in then next setup.

2. An Evolutionary Approach

 The evolutionary approach in our study is implemented by means of genetic

programming, which implies gradually evolving a set of programs which compete for “best

fitness”. These programs may be closed form mathematical formulas, or they may be

algorithms written in some programming language. The basic idea was introduced as genetic

algorithms, which is a slightly different approach (Holland, 1975). Genetic algorithms are

based on a “bit string” of fixed length, in which the numbers can take on the values 0 or 1,

and represents a possible individual that might survive to the next generation. The bit string is

evaluated by calculating a value based on the 0’s and 1’s . In some models the place of each

single number in the string represents some phenomenon, which is or is not taken into

account according to the value 1 or 0, thus modelling individual behaviour. In other models

the bit string is just evaluated and converted to a decimal number which represents some

individual behaviour. In order to perform natural selection one must have some fitness

measure, by which the individuals are ranked. The better fitness, the greater the probability

of survival.

The natural selection mechanism randomly picks out a given number of individuals in

groups of 3, ranks them by the fitness criterion, and lets the best fit ones reproduce, i.e. the

 5

“loser” in the ranking list of 3 is replaced by some randomly chosen combination of the two

“parents”.

In genetic algorithms a combination of the two parent’s bit strings create a new

individual which may or may not do better than the replaced one, and (hopefully) also do

better than the parents. This is imitating the crossover event in natural reproduction. It is also

common to make a random choice between crossover and mutation. In case of mutation only

one “parent” is chosen, and some of its characteristics are changed to create the “offspring”.

This process is gradually creating a new population, and the speed of this change is subject to

parameter settings exogenous to the model. (Koza 1992)

 Genetic Programming takes this one step further, inasmuch as the bit string is

substituted by a closed form mathematical expression, or a sequence of (machine language)

program statements. The genetic program then becomes a collection of primitive functions

such as +,-,*,/, Max(), Min() etc., which operate on variables and constants. The variables

must be updated continually in the model (from a source that depends on the overall structure

of the model - usually some externally generated input data), while the constants do not

change. Typical expressions might be

1) F = V(1)*0.2341 + (V(2)/V(3))*4.5521

2) F = V(4)*11.18 - (V(2)-V(3))/0.9863,

where V(n) indicate variables. At some stage in the algorithm, 1) and 2) might be the parents

in a crossover operation, to (randomly) create a new individual

3) V(1)*0.2341 + (V(2)-V(3))/0.9863,

which might prove better fit than the replaced individual, or even the parents.

Since these closed form expressions easily may be represented by a sequential computer

program (which is executed one statement after another) , one might as well generate

programs and perform the same kind of operations on them. That is, the programs are exposed

to natural selection by means of the fitness criterion, and the program code is manipulated by

means of imitated crossover and mutation operations.

This is in fact what we do in this study, and for this purpose we have chosen to use

the program package “Discipulus” from Register Machine Learning Technologies, Inc.,

which is well suited to study the problem at hand.

3. The Model

 6

The target of prediction is auditors opinion class 0 and 1, based on a coded value of

the auditors opinion in the result year. Class 0 represents the set of codes 0-3, and class 1

represents the set of codes 4-9. The prediction is based on a set of financial key indicators in

the previous year (the prediction year). The chosen financial indicators will be presented

below. The auditor’s opinion indicator is a number from 0 to 9 , as listed below:

0 = Clean (unmodified)

1 = Unqualified opinion with explanatory paragraph

2 = Qualified opinion - scope limitation

3 = Both 1 and 2

4 = Adverse opinion

5 = Disclaimer

Explanatory paragraphs - could be symptoms of severe problems

6 = Some shareholder(s) have been granted unsecured loans in violation of

applicable law

7 = Payroll tax deductions not put into a separate bank account

8 = Documentation and internal control routines lacking

9 = Equity capital is lost, additional capital influx is necessary to legally continue

 the business

The data set has been supplied by Dun and Bradstreet, containing year end accounts for

nearly 200.000 companies for the period 1988 -1997. Coded auditor’s opinions are available

for the period 1992-1997.

We have chosen 1995 as the result year. We have selected the set of financial

indicators from 1994 financial statements of companies with auditors opinion =0, the

prediction year. Furthermore, we have selected 1994 companies so that half of them have a 0-

3 in 1995 (category “healthy in 1995”) and half of them have a 4-9 code (category “failed 1)

in 1995”).

__
1) By “failed” we do not mean bankrupt or insolvent, we just mean failed to pass the auditors examination

receiving a clean opinion

This way of modeling may give answers to the question: Do the financial statements

contain information that will enable us to predict next years auditors opinion, though the

auditor has found no reason to make any comments this year? To obtain our results we

divide this data set in two, the first is the training data set on which the prediction rules are

evolved, the second is the validation set, so that the evolved rules can be tested “out of

sample”: How well do they perform on a data set on which they have not been trained?

 7

The healthy and failed companies are paired according to two criteria, i.e. the

“industry code” and within industry code the “company size”. Company size is measured by

log10 of total assets according to the balance sheet. The point in this is to create a data set

where pairs of companies with 4-9 and 0 in 1995 are as similar as possible, both according to

industry and size. To conclude, each pair of “healthy” and “failed” companies have been

assigned a random number between 0 and 1 by which they are ordered, so that the industry

codes and company sizes are as diverse as possible in the two subsets.

The “4-9” situation (class 1) may indicate severe problems in the conduct of business,

although many paths may lead to this situation. The market conditions may suddenly take a

turn for the worse. Examples might be the quick and possibly lasting drop in prices of crude

oil in 1998, or the sudden interest rate hike in Norway during 1998, increasing the financial

costs for all leveraged companies. Furthermore it may be obsolete or inadequate business

strategy, poor management, major embezzlement (a crime) etc.

 Whichever the cause, the “4-9” situation is sufficiently tangible to motivate some

preventive action. If we are able to predict this situation before it occurs, we would place the

company on an observation list for closer follow up. We might then substantially increase the

chance of avoiding a situation which leads to the loss if the company’s equity capital. We

might also be in a far better position to discover criminal activity. This would be of particular

interest to the vendors, the credit institutions and the tax authorities, but also to the owners

who risk losing their stock investment. To bring this about, we now put Dicipulus to work on

our model.

 Dicipulus works with the two data sets presented above, one for training and one for

validation. We are starting with the following set of financial indicators (V(.) is the variable

number in the model)

V(0) = (Cash Flow)/(Total debt)

V(1) = (Cash balance)/(Short term debt)

V(2) = (Equity capital)/(Total capital)

V(3) = (Profit before taxes + Financial cost)/(Total capital)

V(4) = (Financial cost)/(Gross Revenue)

V(5) = (Short term debt)/(Total debt)

V(6) = Log10(Total capital) - measuring company size

V(7) = Ln(number of years in business)

V(8) = (Drawing rights + Accounts Payable)/Total debt

V(9)=(Losses on Acct. receivable)/(Accounts Receivable)

V(10)=(Assets serving as collateral for loans)/Total Capital

 8

The Discipulus target indicator = 0 if AO-1995 = 0-3,

= 1 if AO-1995 = 4-9

Some comments about the variables:

V(0)

Cash flow is taken as the total “source of capital” computed from the changes in the balance

sheet from 1993 to 1994. Depreciation has already been deducted from the assets in the

balance sheet, so no accumulated depreciation on the liabilities side of the balance sheet

exists. This indicator measures the ratio “liquidity to total debt” , and expresses

the company’s ability to handle it’s leverage.

V(1)

 is a liquidity indicator, showing the percentage of cash available to cover short term debt.

The smaller this number is, the more vulnerable the company is.

V(2)

is an indicator of how solid the company is. The greater the number the better the bankruptcy

resistance if the company should run at a loss for some period of time.

V(3)

 measures the return on the total amount of capital employed in the company. It shows the

return regardless of financing.

V(4)

measures the ratio of the cost of debt financing compared to profit before taxes. It is a way to

compare the “return on debt” to the return on equity capital.

V(5)

measures the ratio short term/long term debt. A hypothesis is, that a company in financial

trouble tends to finance its operations with (expensive) short term debt.

V(6)

Some preliminary experiments on American data showed that the Log10(.) rather than the

Ln(.) was a good measure of company size in the model

 9

V(7)

is based on the supposition that the younger the company, the greater the risk to run into

financial problems

V(8)

shows whether short term debt plays an important role or not in the leveraging of the

company.

V(9)

indicates the quality of accounts receivable.

V(10)

indicates the percentage of assets that are reserved as collateral for certain loans

The target indicator can, as we see, take on the two values 0 and 1. When predicting

there is given a threshold parameter of 0.5, which means that prediction values p in the range

of 0 ≤ p < 0.5 are interpreted as 0, and values in the range 0.5 ≤ p ≤ 1 are interpreted as 1.

 Dicipulus now creates a number of machine language programs based on drawings

(10000 different programs in our experiment) form a uniform distribution. That means: It

draws random numbers between 0 and 1, each number having the same probability to be

drawn. Then it chooses between a set of available program instructions, (+,- , * , /,) a set

of input variables v(0), v(1), a set of constants and a set of working (intermediate)

variables f(0), f(1), It chooses (at random) which of these elements are to be included

and in what sequence. The programs are executed based on the variables that are actually

included (there is no guarantee that all variables will be included in one particular program).

Dicipulus keeps track of the total number of trials and the total number of correct

classifications. A wrong classification causes a “penalty”. Those programs producing the

highest number of hits are considered “best”, and these program have the highest probability

of being “parents” to the next generation of programs. The offspring programs are created

according the genetic programming method as presented above: Natural selection, crossover

and mutation.

 Dicipulus reports a variety of results. But we wish to focus on the percentage training

and validation hitrates. Dicipulus also displays the best program from the training dataset, and

which one of these is doing best on the validation data set. These programs are “de-compiled”

from machine language to C++, so what you se is C++ code. One should not have too high

expectations as to the readability of this program code. It is not a product of a human

 10

programmer, so there are no explanatory comments or any other guidelines to make it easy to

understand right away. Instead it is created with only one goal in mind: Efficiency.

The programs may be restricted in length by setting the appropriate parameter. There is no

guarantee that a long program with many statements will work better than a shorter one.

So the length of the evolved code in our experiments is not at all a problem. But the

programs seem to perform their task in a slightly odd fashion, although one should not be

fooled by this. And Discipulus works very fast indeed.

4. Organizing the experiments

Let us recapitulate the dataset selection criteria:

1) First, we select all companies with a “4-9” in 1995, and a “0” in 1994.

We are looking for the “first offenders” in 1995, this year is the one showing the biggest

number of “9” companies. We are then looking for a “0-3” match for every one of the “4-9”

companies by the following criteria:

2) The match should have “0” in 1994, the same industry code (It turned out that this criteria

was always fulfilled, so it was not necessary to select from “the closest possible” industry

code) , and

3) it should have the minimum difference in company size compared to the “4-9” company,

measured by log10 of total capital.

1)-3) put in another way: For each “failed” company, then within the same industry code,

select the “healthy” company most equal in size as the matching “healthy” company.

4) These pairs are then randomly distributed to the training and the validation file, in order to

avoid systematic selection as to industry code and company size in the two files.

5) As a technicality all companies with target value 0 are output before the companies with

target value 1, for reasons of output readability.

The resulting dataset based on these criterion consist of 532 companies in the training dataset,

and the same number in the validation dataset.

The experiments are carried out as follows: The chosen setup of input variables

are run 10 times in Dicipulus. Each run will lead to a different result, due to the choice of the

random number seed. The random number seed is controlling the random number sequence,

 11

and a fixed seed would lead to the same result over and over again, given a fixed number of

tournaments, or “generations” in the genetic programming sense. More specifically, different

seeds will lead to different choices of variables, constants, program instructions and the order

in which they are to be included in the program as it is built. The reason why we perform

this variety of runs is to ascertain model robustness. It would not be acceptable if the training

and validation hitrates were significantly different from one run to the next. We measure the

success by convergence in results over the 10 runs.

 Having finished 10 runs for one setup, we examine the frequency of inclusion of the

variables in these 10 best training programs. We select the variable with fewest occurrences to

be eliminated from the next variable setup. In this way we are approaching the simplest

possible model with a good average predicting power. What program is “best” is left to the

natural selection mechanism, and we acknowledge the financial indicator variables included

in the program as the ones making this particular program the winner. The set of variables

included is also a result of the crossover and mutation operations.

 The experiment has been carried out 10 separate runs on 4 different variable setups,

each new setup containing fever variables than its predecessor.

5. The results

 The tables showing a summary of the results are presented in this paragraph.

The total set of variables is as follows:

Var. Definition Abbreviation

V0 CashFlow/Total Debt CFlow/Debt

V1 Cash/Short Term Debt Cash/S.T.D

V2 Equity Capital/Total Capital ECap/TotCap

V3 (Result before taxes + Financial Costs)/Total Capital ResTF/TotCap

V4 (Financial costs)/(Gross Revenue) FinCost/G.Rev

 12

V5 (Short Term Debt)/(Total Debt) S.T.D/Debt

V6 Log10(Total Capital) Log10(TotCap)

V7 Ln(Years in Business) Ln(YiB)

V8 (Drawing rights + Accounts Payable)/(Total Debt) (DR + AP)/Debt

V9 (Losses on Accounts Receivable)/(Accounts Receivable) (Loss AR)/AR

V10 (Assets put up as collateral)/(Total Capital) (Coll.)/(TotCap)

When reporting the results the abbreviations are used as reference to the variables.

5.1 Setup 1

Setup 1 consists of the whole set of variables V0 - V10, as defined in 5.

The result the 10 runs of Setup 1 is:

(A “1” to the right of the variable marks that it is included in the resulting program)

Setup 1 Run#

Variable def. Var.# 1 2 3 4 5 6 7 8 9 10 Sum

CFlow/Debt V0 1 1 1 1 1 1 1 1 1 1 10

Cash/S.T.D V1 0 0 0 0 0 0 0 1 0 0 1 (Excl)

ECap/TotCap V2 0 1 1 1 0 1 0 1 1 1 7

ResTF/TotCap V3 1 0 0 0 1 0 1 0 1 0 4

FinCost/G.Rev V4 1 1 1 0 0 1 1 1 1 1 8

S.T.D/Debt V5 0 1 0 1 0 1 1 1 0 0 5

Log10(TotCap) V6 0 0 0 1 0 0 1 0 1 0 3 (Excl)

Ln(YiB) V7 0 0 0 0 1 0 0 0 0 0 1 (Excl)

(DR + AP)/Debt V8 1 1 0 1 1 1 0 0 1 1 7

(Loss AR)/AR V9 1 0 1 0 0 1 1 1 1 1 7

(Coll.)/(TotCap) V10 1 0 1 1 1 0 0 0 1 1 6

Training Hitrate 62.4 65.6 64.7 63.7 65.8 64.7 68.2 65.2 64.8 64.5 65.0

Validation ” 58.5 59.0 61.5 57.7 59.0 58.0 56.0 56.0 57.9 60.2 58.4

All variables included in less than 40% of the cases are chosen for elimination before the

next Setup. Variables V1,V6 and V7 are therefore marked for exclusion before setup 2.

Based on the training data set we are able to predict correctly in 65% of the cases, which is

30% better than the “neutral” 50%-50% case.

5.2 Setup 2

Setup 2 Run#

Variable def. Var.# 1 2 3 4 5 6 7 8 9 10 SUM

Cflow/Debt V0 1 1 1 1 1 1 1 1 1 1 10

ECap/TotCap V1 1 0 1 1 1 1 0 0 1 1 7

 13

ResTF/TotCap V2 1 0 1 0 1 1 0 1 1 1 7

FinCost/G.Rev V3 0 1 1 0 1 1 1 1 0 1 7

S.T.D/Debt V4 0 1 0 0 0 1 0 1 0 0 3 (Excl)

(DR + AP)/Debt V5 1 1 1 1 0 0 1 1 0 1 7

(Loss AR)/AR V6 1 1 1 1 0 0 1 0 1 0 6

(Coll.)/(TotCap) V7 1 1 1 1 0 0 1 1 1 1 8

Training Hitrate 65.2 63.5 64.3 64.3 67.5 67.3 64.7 64.8 65.6 63.9 65.1

Validation “ 59.6 55.5 61.8 60.2 57.0 57.0 60.9 60.0 63.7 61.3 59.7

Setup 2 shows a slight increase in average training hitrate (0.1 points) and a more substantial

increase in average validation hitrate (1.3 points) V4 is excluded ,and the remaining variables

are included in setup 3.

5.3 Setup 3

Setup 3 Run#

Variable def. Var # 1 2 3 4 5 6 7 8 9 10 SUM

CFlow/Debt V0 1 1 1 1 1 1 1 1 1 1 10

ECap/TotCap V1 1 1 1 0 0 0 1 0 0 1 5

ResTF/TotCap V2 0 1 0 0 0 0 0 1 1 0 3 (Excl)

FinCost/G.Rev V3 0 1 1 0 1 1 0 1 1 1 7

(DR + AP)/Debt V4 1 1 0 1 1 1 1 1 1 0 8

(Loss AR)/AR V5 1 1 1 1 0 0 1 0 1 1 7

(Coll.)/(TotCap) V6 1 1 0 1 1 1 1 1 0 1 8

Training Hitrate 65.0 65.2 65.8 60.7 66.2 66.0 63.5 64.8 63.5 66.7 64.7

Validation “ 61.8 59.8 57.0 56.6 56.6 61.1 61.5 57.1 59.6 63.7 59.5

The average hitrates are falling back slightly, (0.4 - 0.2 points) , but the they largely stay on

the same level. Variable V2 is now eliminated, and the next setup is our final setup.

5.4 Setup 4

Setup 4 Run#

Variable def. Var.# 1 2 3 4 5 6 7 8 9 10 SUM

ECap/TotCap V0 1 1 1 1 1 1 1 1 1 1 10

CFlow/Debt V1 0 1 0 0 1 1 0 1 0 0 4

FinCost/G.Rev V2 1 1 1 1 1 1 1 1 1 1 10

(DR + AP)/Debt V3 1 1 1 1 1 1 0 1 1 0 8

(Loss AR)/AR V4 1 1 1 1 1 0 1 1 1 1 9

(Coll.)/(TotCap) V5 0 1 1 1 1 0 1 1 1 1 8

 14

Training hitrate 66.0 63.9 65.6 63.9 63.7 63.9 65.0 63.5 65.0 64.5 64.5

Validation hitrate 60.5 61.1 59.2 64.3 58.6 60.0 61.1 61.3 61.5 64.8 61.2

Setup 4 gives us the smallest difference between training and validation hitrates, and no

variable is included in less than 40% of the cases. The differences between the two hitrates

over the setups are:

Setup 1: 65.0 - 58.4 = 6.6

Setup 2: 65.1 - 59.7 = 5.4

Setup 3: 64.7 - 59.5 = 5.2

Setup 4: 64.5 - 61.2 = 3.3

The elimination of variables seems to have the positive effect that we are evolving rules that

perform more and more alike on the training and validation datasets.

Runs 4 and 10 stand out, as the validation hitrates are slightly above the training

hitrates. We have evolved two prediction rules which perform just as well on the out of

sample validation data as they do on the training data.

5.4.1 A closer study of Run Number 10 and Run Number 4

 Run number 10 is attracting attention because of high hitrates both in training and

validation. The resulting Genetic Programming algorithm (the training algorithm) has been

processed by means of “Matematica”, giving the following result:

1) x = -(V0*(2.082 + V0))/(2*(0.6918 - 0.0268*V0 - 0.0248*V0^2 -1.025*V2)^2) + 2*V2

2) y = 0.511 + 0.0234*(x+V4+2*V5)

We observe some interesting non-linear properties in the x function, where x = f(v0,v2)

 while y = g(x,V4,V5) is linear in x, V4 and V5.

A negative x will contribute to a value of y < 0.5, i.e. a prediction of “no problems ahead”,

while a positive x will contribute to y ≥ 0, i.e. a prediction of potential problems.

The graph shows that high equity capital percentage leads to a decreasing x

when V2 (Financial Cost/Gross Revenue) is increasing.

As V0 (the Equity Capital Percentage) is decreasing, we observe that this relationship is

reversed from certain points of V0 on: An increasing V2 will now contribute to an increasing

x instead. This seems to indicate that financial costs related to gross revenue (incurred as a

result of leveraged investments) does not cause potential problems as long as the equity

capital percentage is above a certain level. Potential problems will, however, be increasingly

present as v2 is increasing while V0 is decreasing.

We have analyzed the x function and present a graph of it in fig. 5.4.1-1

 Run number 4 is attracting similar attention as run number 10. The problem is that the

evolved “training” algorithm is too complex to be resolved as a closed form expression.

 15

This is not, however, the case with the “validation” algorithm. This algorithm is relatively

simple : y=(-V0*0.0468)/((0.0892*V0^2-V5 *V0*0.0936)^2+ 0.3997+V3)+0.5183

Choosing variable V5 (Collateral/TotalCapital) as parameter, and letting V0 and V3

((DrawingRights+AccountsPayable)/TotalDebt) vary, the graph of y = f(V0,V3,V5)

will display the distinct features presented in fig. 5.4.1-2

Increasing V0 creates an increasing “buffer zone” for predicting “no problems”

as 3 increases. An increasing V3 will meet the distinct barrier displayed in the graph, in which

case y will increase above 0.5, which means predicting a potential problem. The higher V0

the longer V3 can travel along the V3 axis before the barrier is encountered.

These two models (fig. 5.4.1-1,5.4.1-2) seem to display an analogy. In run 10 “financial

costs” seems to play the same part as the sum of short term debt items plays in run 4.

Decreasing V0 will create a decreasing distance to a barrier where the model switches form

predicting “no problems” to predicting “potential problems ahead”. Increasing V2 (run 10) or

V3 (run 4) is triggering the change in prediction ceteris paribus. A closer look at V3 / V4

indicates that they are mirror images of each other. Increasing financial costs V3 is ceteris

paribus a function of increasing leverage. In this case V3 contains debt items with relatively

short time to maturity, and is usually is carrying higher financial costs than long term debt

items. Taking this into consideration, the similarity in the two models make sense. The sum of

financial costs is relatively sensitive to increase in short term debt items, therefore the GP

system has discovered two alternative paths, using two different, but closely interrelated

variables to evolve (in principle) similar models of prediction.

V0
0.

05
0

0.
17

0

0.
29

0

0.
41

0

0.
53

0V2

-3
-2.5

-2
-1.5

-1
-0.5

0
0.5

x=f(V0,V2)

Fig. 5.4.1-1

x= -(V0*(2.082 + V0))/(2*(0.6918 - 0.0268*V0 - 0.0248*V0^2 -1.025*V2)^2) + 2*V2
y = 0.511 + 0.0234*(x+V4+2*V5)
V0=EquityCapital/TotalCapital
V2=FinacialCosts/Revenue
V4=ReceivablesWriteoff/AccountsReceivable

 16

V5=Collateral/TotalCapital

1 8
15 22 29 36 43 50 57 64 71 78

S1

S120
0.1
0.2
0.3
0.4
0.5
0.6

f=f(V0,V3,V5)

V0

V3

Fig. 5.4.1-2

y=(-V0*0.0468)/((0.0892*V0^2-V5 *V0*0.0936)^2+ 0.3997+V3)+0.5183
V0=EquityCapital/TotalCapital
V3=(DrawingRights+AccountsPayable)/TotalDebt
V5=Collateral/TotalCapital - introduced as parameter

6. A comparison with the Logit statistical model

A logit regression is based on a single equation where the dependent variable, Yt is a 0-1

dummy variable. It is a maximum likelihood estimation model where the cumulative

distribution function is used to define choice probabilities, given by:

 Pi =1/(1 + e - V)

where:

Pi is the estimated probability

 N-1
V = c + Σ (b i · v i)
 i=0
c and b i are the estimated coefficients as described below,

v i are the observed variable values,

N is the number of observations.

 17

The idea behind this model is to choose, as estimates of c, b i , the values of c, b i that

maximize the probability of obtaining the sample that is actually observed.

We have run a logit regression in the Shazam program package on the training data

set in setups 1-4, and we obtained the following results, based on 532 companies.

6.1 Logit run setup 1

VARIABLE ESTIMATED STANDARD T-RATIO

NAME COEFFICIENT ERROR

V0 -0.15948 0.07962 -2.00290

V1 0.00402 0.00585 0.68604

V2 0.03190 0.08662 0.36829

V3 -0.43330 0.52503 -0.82530

V4 0.39029 0.38035 1.02610

V5 0.03461 0.37083 0.09333

V6 -0.29347 0.14998 -1.95680

V7 0.12887 0.17864 0.72139

V8 1.23350 0.39540 3.11960

V9 0.33974 0.29690 1.14430

V10 1.10530 0.45731 2.41710

CONSTANT 0.10537 0.70514 0.14943

6.1 Logit run setup 1 (continued..)

 PREDICTION SUCCESS TABLE

 ACTUAL

 0 1

 0 163 111

PREDICTED 1 103 155

NUMBER OF RIGHT PREDICTIONS = 318.00

PERCENTAGE OF RIGHT PREDICTIONS = 0.59774

6.2 Logit run setup 2

VARIABLE ESTIMATED STANDARD T-RATIO

NAME COEFF ERROR

V0 -0.13142 0.07166 -1.83400

V1 0.03735 0.08115 0.46024

 18

V2 -0.63142 0.51852 -1.21770

V3 0.35188 0.37865 0.92929

V4 -0.01800 0.36629 -0.04914

V5 1.11770 0.38791 2.88130

V6 0.31342 0.29421 1.06530

V7 0.89699 0.43242 2.07440

CONSTANT -0.33447 0.29498 -1.13390

 PREDICTION SUCCESS TABLE

 ACTUAL

0 1

0 158 114

PREDICTED 1 108 152

NUMBER OF RIGHT PREDICTIONS = 310

PERCENTAGE OF RIGHT PREDICTIONS = 0.58271

6.3 Logit run setup 3

VARIABLE ESTIMATED STANDARD T-RATIO

NAME COEFF ERROR

V0 -0.13197 0.07103 -1.85810

V1 0.03764 0.08101 0.46461

V2 -0.63519 0.51279 -1.23870

V3 0.35434 0.37712 0.93961

V4 1.10920 0.34759 3.19120

V5 0.31386 0.29402 1.06750

V6 0.90503 0.40023 2.26130

CONSTANT -0.34634 0.16920 -2.04690

 PREDICTION SUCCESS TABLE

 ACTUAL

 0 1

 0 158 114

 19

PREDICTED 1 108 152

NUMBER OF RIGHT PREDICTIONS = 310

PERCENTAGE OF RIGHT PREDICTIONS = 0.58271

6.4 Logit run setup 4

VARIABLE ESTIMATED STANDARD T-RATIO

NAME COEFF ERROR

V0 0.03339 0.07930 0.42105

V1 -0.11654 0.07152 -1.62930

V2 0.37849 0.39466 0.95902

V3 1.13930 0.34676 3.28550

V4 0.31952 0.29228 1.09320

V5 0.91707 0.40154 2.28390

CONSTANT -0.43096 0.15534 -2.77440

6.4 Logit run setup 4 (continued...)

PREDICTION SUCCESS TABLE

 ACTUAL

 0 1

 0 161 114

PREDICTED 1 105 152

NUMBER OF RIGHT PREDICTIONS = 313

PERCENTAGE OF RIGHT PREDICTIONS = 0.58835

6.5 Summary

When comparing the logit hitrates (Percentage of right predictions) and the GP training

hitrates we see the following:

Logit GP Training

Setup hitrates hitrates (Average)

1 60 65.0

2 58 65.1

 20

3 58 64.7

4 59 64.5

GP obtains the highest score in all cases. An additional comment should be made at this point:

Preliminary experiments showed an interesting result as to robustness in the two models.

Running the analysis on a dataset containing significant out-liers (a small number of extreme

values far away from the average value, and far outside one standard deviation) showed that

GP discovered these anomalies and adjusted the algorithm accordingly, while the logit model

showed notably lower hitrates. When removing the out-liers the logit result improved

significantly, while the GP results hardly improved at all. This is a noteworthy property of the

GP method: It can be expected to be robust against invasion of out-liers in the data.

GP develops ways around the anomalies and encapsulates them, so to speak.

Then, the next question to examine is: How well will the logit model perform on the

validation data set, based on the estimated coefficients from the training set in setup 4?

That is: We want to analyze

 Pi =1/(1 + e - V)

where

V = -0.43096 + 0.03339·V0+0.11654·V1+0.37849·V2+1.1393·V3+0.31952·V4

 +0.91707·V5

and

V0,V1,--,V5 are values from the validation dataset. This was accomplished by means

of an MS Excel model, computing a Pi value on each data line (one line per company).

The Pi value is then transformed as follows:

 | 1 when Pi >=0.5
Pi‘ = <
 | 0 when Pi < 0.5

Each Pi‘ is then compared to the [0,1] target value in the validation file, and whenever

Pi‘ = Target Value a “hit” is counted, otherwise a “no hit” is counted.

The result of this model is a hitrate of 0.5714, a bit less than the result on the training data set.

7. Conclusion

 21

The results of this study show that it is possible to predict with a reasonable degree of

correctness that companies that this year have passed the auditors examination with flying

colors, the next year will receive au unfavorable opinion, and that this years financial

statements contain information that put us in a position to make such predictions. This result

is expected to be of interest to the auditor’s community, to bankers and vendors following up

the credit worthiness of a client , as well as to the tax authorities, and the credit authorities. If

we are in a position to predict adverse or explanatory auditor’s opinions the following year,

we have also put ourselves in a more favorable position when it comes to avoiding financial

problems. We have then managed to create a short-list of companies that deserve scrutiny

beyond average measures.

References

Holland, J.H. 1975, Adaptation in Natural and Artificial Systems. University of Michigan
Press

Jones, F.L., 1987. “Current techniques in bankruptcy prediction” Journal of accounting
Literature.

Koza, J.R., 1992. “Genetic Programming: On the Programming of Computers By Means of
Natural Selection.” Massachusetts Institute of Technology.

McKee, T.E., 1998. A Mathematically Derived Rough Set Model for Bankruptcy Prediction.
Collected Papers of the 7th Annual Research Workshop On Artificial Intelligence and
Emerging Technologies In Accounting, Auditing and Tax, Editor: C.E.Brown.
Artificial Intelligence/Emerging Technologies section of the American Accounting
Association.

McKee, T.E., Lensberg, T., 1998. Using A Geneitc Algorithm To Obtain A Causally Ordered
Model From A Rough Sets Derived Bankruptcy Prediction Model. A preliminary result
reporting and discussion paper, the Norwegian School of Economics and Business
Administration.

