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Formålet med denne studien er å undersøke om en kan trene opp prediksjonsregler 

ved hjelp av en evolusjonær tilnærming,  som kan identifisere foretak der revisor vil finne 

grunn til merknader i kommende år. Basis for prediksjonen er regnskapstall fra årsregnskapet 

og kodede revisoranmerkninger. Regnskapene er valgt ut slik at de i prediksjonsåret er fri for 

merknader, mens  det i påfølgende er en eller annen revisormerknad (også inkludert “ingen 

merknad”). 

Problemstilingen er: Kan vi i en evolusjonær tilnærming avdekke informasjon i et 

regnskap uten merknad som antyder problemer under utvikling, som revisor vil oppdage og 

anmerke i det påfølgende år?  I så fall vil en ha basis for et “Early warning” system som vil 

være av betydning når en skal bedømme selskapets drift og utvikling. Dette kan  både støtte 

revisor i hans arbeid, samtidig som de interessenter som skal kredittvurdere selskapet har et 

verktøy å støtte seg på. Revisoranmerkninger gir uttrykk for revisors oppfatning av selskapets 

stilling og drift. Dersom disse anmerkningene er entydig negative, vil dette avspeile mulige 

alvorlige finansielle problemer.  Selskaper som er i en slik situasjon kan risikere å gå konkurs. 

Situasjonen kan friste til økonomisk kriminelle handlinger, eller kan være resultat av slike 

handlinger.  Revisoranmerkningene vil aldri entydig kunne gi informasjon om hvilken 

situasjon selskapet er i. Men de kan brukes som en proxy (tilnærming) på at noe er galt - 

eventuelt som en proxy på at selskapet ikke har observerbare  problemer. 

Basert på 1994 som det valgte prediksjonsår forsøker studien å utvikle regler som kan  

predikere for 1995 hvilke klasse av revisoranmerkning som vil bli gitt: Enten “intet vesentlig 

å bemerke”, eller merkander som viser at der er forhold som revior ikke er tilfreds med. 

En vil gjenom dette se om årsregnskapet inneholder informasjon som kan predikere 

potensielle problemer, selv om revisor i inneværende år ikke har funnet noe å sette fingeren 

på.  I så fall vil både revisor ,bankenes kredittvurdering samt skattemyndighetene ha et nyttig 

hjelpemiddel for å kunne velge ut bedrifter som bør settes på en observasjonsliste for tettere 

oppfølging, før en kritisk situasjon oppstår. Tap kan begrenses ved at en i forkant observerer 

potensielle problemer, og deretter går til nødvendige omstruktureringer for å løse dem.  På 

denne måten kan dette være et verktøy til å forebygge både konkurs og konkurskriminalitet, 

eller annen økonomisk kriminalitet for den del. 

Datamaterialet strekker seg fra 1988 til 1997, og er levert av Dun & Bradstreet. Det 

foreligger kodede revisoranmerkninger for perioden 1992-1997. 

 

 

 

 

1.   Introduction 
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The purpose of this study is to investigate the results of an evolutionary approach to  

predicting auditors opinions in the “result year” based on financial statements in the “year of 

prediction”.  The financial statements in the prediction year are chosen among companies 

where the auditor found that everything was in order. The financial statements in the result 

year are organized in two classes: Class 0 contains companies with no serious remarks on the 

part of the auditor, while class 1 contains companies that have received an explanatory 

auditors opinion of some degree (see below).  The idea behind this study is to examine 

whether we can predict which class of auditors opinion (0,1) the company will belong to in 

the result year, based on a prediction year financial statement belonging to class 0. If this is 

successful, we have shown that there is some hidden information in the financial statements 

that the genetic programming algoritms can be trained by evolution to make use of. The result 

is a  predicted opinion class in the result year  with a degree of accuracy that is reasonably 

satisfactory.  A prediction hitrate of 50% is the poorest result to be expected. There is always 

a 50-50% chance to be right. If we, based on this model can demonstrate hitrates, say 30 % 

above this level (64-65%) , we will term this reasonably satisfactory. If  this result is obtained, 

we have tool of analysis which enables us to put class 1 companies on an observation list. The 

auditor will then make a note of this, and start reexamining certain facts , and bring his results 

of his examination to the attention of the management. This may be serious financial 

problems in an early stage of development, it may be (perhaps weak) signs of possible 

economic crime (systematic drain of cash  hidden as ordinary business expenses, or just plain 

embezzlement), it may be a situation that in the end will cause the company to go bankrupt. 

At this early stage it will be difficult to determine the real causes behind the predicted results. 

But placing the company on an observation list will enable the interested parties (owners, 

board of directors, executive management, auditors, bankers, credit rating companies, tax 

authorities., suppliers and so forth) to follow up the company more closely.  

This study is employing genetic programming as an adaptive learning technology. 

This means that rules for predicting possible problems in the year to come are evolved 

gradually based on the ideas of  evolution, i.e. natural selection, genetic crossover and 

mutation. The rules providing the best fit, i.e. producing the greatest number of correct hits 

will survive in the natural selection process. The mediocre or poor ones will be replaced by a 

combination of their more successful competitors in a large population of such rules. 

 Over the past 25 to 30  years much research has been done to develop models in order 

to predict bankruptcy  based on financial data. This effort is surveyed in Jones (1987). 

 

Explicit prediction of bankruptcy is outside the scope of this study (it will be left to another 

study) , but this topic has been studied at length, and should be surveyed briefly in this report. 
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Altman (1968) introduced this  field of research by employing  discriminant analysis, and 

since then  it has been subject to extensive studies by means of a multitude of techniques, 

such as:  multivariate conditional probability models, recursive partitioning  models, linear 

programming, expert systems, neural networks, chaos theory and rough set theory ( McKee, 

1998). A common approach to develop such models is to review the literature to identify a 

large set of  financial or non financial variables with proven  predictive power,  and among 

those, identify a reduced set.  One might use either judgement or mathematical analysis to do 

this, and the resulting set will then be input variables in the bankruptcy prediction model. 

A problem is that many models  have been built, using different variables and 

different forms to specify the relationship between the variables. Although some models  

predict accurately up to 90 % , no generally accepted model for bankruptcy prediction based 

on underlying financial indicators has emerged so far. This failure seems to incur a significant 

number of social costs due to bankruptcy, that might otherwise be avoided if a generally 

applicable theory were available. (McKee, Lensberg, 1998)  

 In our study, we let the evolutionary process perform a natural selection for us,  i.e.  

from one step to the next in the process of selecting a reduced set of critical variables, the 

variables that were selected for inclusion in the model less than 4 out of 10 times over 10 

independent runs is eliminated, and the remaining ones will be included in then next setup.  

 

2. An Evolutionary Approach 

 The evolutionary approach in our study is implemented by means of genetic 

programming, which  implies gradually evolving a set of programs which compete for “best 

fitness”. These programs may be closed form mathematical formulas, or they may be 

algorithms written in some programming language.  The basic idea was introduced as genetic 

algorithms, which is a slightly different approach (Holland, 1975). Genetic algorithms are 

based on a “bit string” of fixed length, in which the numbers can take on the values 0 or 1, 

and represents a possible individual that might survive to the next generation. The bit string is 

evaluated by calculating a value based on the 0’s and 1’s . In some models the place of each 

single number in the string represents some phenomenon, which is or is not taken into 

account according to the value 1 or 0, thus modelling individual behaviour. In other models 

the bit string is just evaluated and converted to a decimal number which represents some 

individual behaviour.  In order to perform natural selection one must have some fitness 

measure,  by which the individuals are ranked. The better fitness, the greater the probability 

of survival. 

The natural selection mechanism randomly picks out a given number of individuals in 

groups of  3, ranks them by the fitness criterion,  and lets the best fit ones reproduce, i.e. the 
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“loser” in the ranking list of 3  is replaced by some randomly chosen combination of the two 

“parents”. 

In genetic algorithms a combination of the two parent’s bit strings create a new 

individual which may or may not do better than the replaced one,  and (hopefully) also do 

better than the parents. This is imitating the crossover event in natural reproduction. It is also 

common to make a random choice between crossover and mutation. In case of mutation only 

one “parent” is chosen, and some of its characteristics are changed to create the “offspring”. 

This process is gradually creating a new population, and the speed of this change is subject to 

parameter settings exogenous to the model. (Koza 1992) 

 Genetic Programming takes this one step further, inasmuch as the bit string is 

substituted by a closed form mathematical expression, or a sequence of (machine language) 

program statements. The genetic program then becomes a collection of primitive functions 

such as +,-,*,/, Max(), Min() etc., which operate on variables and constants. The variables 

must be updated continually in the model (from a source that depends on the overall structure 

of the model - usually some externally generated input data), while the constants do not 

change. Typical expressions might be 

 

1) F = V(1)*0.2341 + (V(2)/V(3))*4.5521 

2) F = V(4)*11.18 - (V(2)-V(3))/0.9863,   

 

where V(n) indicate variables.  At some stage in the algorithm, 1) and 2) might be the parents 

in a crossover operation, to (randomly) create a new individual 

 

3)  V(1)*0.2341 + (V(2)-V(3))/0.9863, 

 

which might prove better fit than the replaced individual, or even the parents. 

Since these closed form expressions easily may be represented by a sequential computer 

program (which is executed one statement after another) , one might as well generate 

programs and perform the same kind of operations on them. That is, the programs are exposed 

to natural selection by means of the fitness criterion, and the program code is manipulated by 

means of imitated crossover and mutation operations.  

This is in fact what we do in this study, and for this purpose we have chosen to use 

the program package “Discipulus” from Register Machine Learning Technologies, Inc., 

which is well suited to study the problem at hand.  

 

3. The Model 
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The target of prediction is auditors opinion class 0 and 1, based on a coded value of 

the auditors opinion in the result year. Class 0 represents the set of  codes 0-3, and class 1  

represents the set of codes 4-9. The prediction is based on a set of financial key indicators in 

the previous year (the prediction year). The chosen financial indicators will be presented 

below.  The auditor’s opinion indicator is a number  from 0 to 9 , as listed below: 

0 =  Clean (unmodified) 

1 =  Unqualified opinion with explanatory paragraph 

2 =  Qualified opinion - scope limitation 

3 = Both 1 and 2  

4 = Adverse opinion 

5  = Disclaimer 

Explanatory paragraphs - could be symptoms of severe problems 

6  = Some shareholder(s) have been granted unsecured loans in violation of  

applicable law  

7  = Payroll tax deductions not put into a separate bank account 

8  = Documentation and internal control routines lacking 

9 = Equity capital is lost, additional capital influx is necessary to legally continue 

  the business 

The data set has been supplied by Dun and Bradstreet, containing year end accounts for 

nearly 200.000 companies for the period 1988 -1997. Coded auditor’s opinions are available 

for the period 1992-1997.  

We have chosen 1995 as the result year. We have selected the set of financial 

indicators from 1994 financial statements of companies with auditors opinion =0, the 

prediction year. Furthermore, we have selected 1994 companies so that half of them have a 0-

3 in 1995 (category “healthy in 1995”) and half of them have a 4-9 code (category “failed 1)  

in 1995” ). 

  

______________________________________________________________________ 
1) By “failed” we do not mean bankrupt or insolvent, we just mean  failed to pass the auditors examination 

receiving a clean opinion 

This way of modeling may give answers to the question: Do the financial statements 

contain information that will enable us to predict next years auditors opinion, though the 

auditor has found no reason to make any comments this year?   To obtain our results we 

divide this data set in two, the first is the training data set on which the prediction rules are 

evolved,  the second is the validation set, so that the evolved rules can be tested “out of 

sample”: How well do they perform on a data set on which they have not been trained? 
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The healthy and failed companies are paired according to two criteria, i.e. the 

“industry code” and within industry code the “company size”. Company size is measured by  

log10 of  total assets according to the balance sheet. The point in this is to create a data set 

where pairs of companies with 4-9 and 0 in 1995 are as similar as possible, both according to 

industry and size. To conclude, each pair of “healthy” and “failed” companies have been 

assigned a random number between 0 and 1 by which they are ordered, so that the industry 

codes and company sizes are as diverse as possible in the two subsets. 

The “4-9” situation (class 1) may indicate severe problems in the conduct of business, 

although many paths may lead to this situation. The market conditions may suddenly take a  

turn for the worse. Examples might be the quick and possibly lasting drop in prices of crude 

oil in 1998, or the sudden interest rate hike in Norway during 1998, increasing the financial 

costs for all leveraged companies. Furthermore it may be obsolete or inadequate business 

strategy, poor management, major embezzlement (a crime) etc.  

 Whichever the cause, the “4-9” situation is sufficiently tangible to motivate some 

preventive action. If we are able  to predict this situation before it occurs, we would place the 

company on an observation list for closer follow up. We might then substantially increase the 

chance of avoiding a situation which leads to the loss if the company’s equity capital. We 

might also be in a far better position to discover criminal activity. This would be of particular 

interest to the  vendors, the credit institutions and the tax authorities, but also to the owners 

who risk losing their stock investment. To bring this about, we now put Dicipulus to work on 

our model. 

 Dicipulus works with the two data sets presented above, one for training and one for 

validation. We are starting with the following set of financial indicators (V(.) is the variable 

number in the model) 

 

V(0) = (Cash Flow)/(Total debt) 

V(1) = (Cash balance)/(Short term debt) 

V(2) = (Equity capital)/(Total capital ) 

V(3) = (Profit before taxes + Financial cost)/(Total capital) 

V(4) = (Financial cost)/(Gross Revenue) 

V(5) = (Short term debt)/(Total debt) 

V(6) = Log10(Total capital) - measuring company size  

V(7) = Ln(number of years in business) 

V(8) = (Drawing rights  + Accounts Payable)/Total debt 

V(9)=(Losses on Acct. receivable )/(Accounts Receivable) 

V(10)=(Assets serving as collateral for loans)/Total Capital 
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The Discipulus target  indicator  = 0 if AO-1995 = 0-3,  

= 1 if AO-1995 = 4-9 

 

Some comments about the variables:  

V(0)  

Cash flow is taken as the total “source of capital” computed from the changes in the balance 

sheet from 1993 to 1994. Depreciation has already been deducted  from the assets in the 

balance sheet, so no accumulated depreciation on the liabilities side of the balance sheet 

exists. This indicator measures the ratio “liquidity to total debt” , and expresses 

the company’s  ability to handle it’s  leverage. 

 

V(1) 

 is a liquidity indicator, showing the percentage of cash available to cover short term debt.  

The smaller this number is, the more vulnerable the company is. 

 

V(2)  

is an indicator of how solid the company is. The greater the number the  better the bankruptcy 

resistance if the company should run at a loss for some period of time. 

 

V(3) 

 measures the return on the total amount of capital  employed in the company. It shows the 

return regardless of financing. 

 

V(4)  

measures the ratio of the cost of debt financing compared to  profit before taxes. It is a way to 

compare the “return on debt” to the return on equity capital. 

 

 

V(5)  

measures the ratio short term/long term debt. A  hypothesis is, that a company in financial  

trouble tends to finance its operations with (expensive) short  term debt. 

 

V(6)  

Some preliminary experiments on American data showed  that the Log10(.) rather than the 

Ln(.) was a good measure of company size in  the model 
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V(7)  

is based on the supposition that the younger the company, the greater the risk to run into 

financial problems 

 

V(8)  

shows whether short term debt plays an important role or not in the leveraging of the 

company. 

 

V(9)  

indicates the quality of accounts receivable. 

 

V(10)  

indicates the percentage of assets that are reserved as collateral for certain loans 

 

The target indicator can, as we see, take on the two values 0 and 1. When predicting 

there is given a threshold parameter of 0.5, which means that prediction values p in the range  

of 0 ≤ p < 0.5  are interpreted as 0, and values in the range 0.5 ≤ p ≤  1 are interpreted as 1. 

 Dicipulus now creates a number of machine language programs based on drawings 

(10000 different programs in our experiment) form a uniform distribution. That means: It 

draws random numbers between 0 and 1, each number having the same probability to be 

drawn. Then it chooses between a set of available program instructions, (+,- , * , /, ....)  a set 

of input variables v(0), v(1), ....  a set of constants and a set of working (intermediate) 

variables f(0), f(1), ....... It chooses (at random) which of these elements are to be included 

and in what sequence. The programs are executed based on the variables that are actually 

included (there is no guarantee that all variables will be included in one particular program). 

Dicipulus  keeps track of the total number of trials and the total number of correct 

classifications. A wrong classification causes a “penalty”. Those programs producing the 

highest number of hits are considered “best”, and these program have the highest probability 

of being “parents” to the next generation of programs. The offspring programs are created 

according the genetic programming method as presented above: Natural selection, crossover 

and mutation. 

 Dicipulus reports a variety of results. But we wish to focus on the percentage training  

and validation hitrates. Dicipulus also displays the best program from the training dataset, and 

which one of these is doing best on the validation data set. These programs are “de-compiled” 

from machine language to C++, so what you se is C++ code.  One should not have too high 

expectations as to the readability of this program code. It is not a product of a human 
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programmer, so there are no explanatory comments or any other guidelines to make it easy to 

understand right away. Instead it is created with only one goal in mind: Efficiency. 

The programs may be restricted in length by setting the appropriate parameter. There is no 

guarantee that a long program with many statements will work better than a shorter one. 

So the length of the evolved code in our experiments is not at all a problem. But  the 

programs seem to perform their task in a slightly odd fashion, although one should not be 

fooled by this. And Discipulus works very fast indeed. 

 

 

4. Organizing  the experiments 

Let us recapitulate the dataset selection criteria:   

1) First, we select all companies with a “4-9” in 1995, and a  “0” in 1994.  

We are looking for the “first offenders” in 1995, this year is the one showing the biggest 

number of “9” companies. We are then looking for a “0-3” match for every one of  the “4-9” 

companies by the following criteria:  

 

2) The match should have “0” in 1994, the same industry code (It turned out that this criteria 

was always fulfilled, so it was not necessary to select from “the closest possible” industry 

code) , and 

 

3) it should have the minimum difference in company size compared to the “4-9” company, 

measured by log10 of total capital.  

 

1)-3) put in another way: For each “failed” company, then within the same industry code, 

select the “healthy” company most equal in size as the matching “healthy” company. 

 

4) These pairs are then randomly distributed to the training and the validation file, in order to 

avoid systematic selection as to industry code and company size in the two files. 

5) As a technicality all companies with target value 0 are output before the companies with 

target value 1, for reasons of output readability. 

The resulting dataset based on these criterion consist of 532 companies in the training dataset, 

and the same number in the validation dataset. 

 

The experiments are carried out as follows: The chosen setup of input variables 

are run 10 times in Dicipulus. Each run will lead to a different result, due to the choice of the 

random number seed. The random number seed is controlling the random number sequence, 
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and a fixed seed would lead to the same result over and over again, given a fixed number of 

tournaments, or “generations” in the genetic programming sense. More specifically, different 

seeds will lead to different choices of variables, constants, program instructions and the order 

in which they are to be included in the program as it is built.   The reason why we perform 

this variety of runs is to ascertain model robustness. It would not be acceptable if  the training 

and validation hitrates were significantly different from one run to the next. We measure the 

success by convergence in results over the 10 runs. 

 Having finished 10 runs for one setup, we examine the frequency of inclusion of the 

variables in these 10 best training programs. We select the variable with fewest occurrences to 

be eliminated from the next variable setup. In this way we are approaching the simplest 

possible model with a good average predicting power. What program is “best” is left to the 

natural selection mechanism,  and we acknowledge the financial indicator variables included 

in the program as the ones making this particular program the winner. The set of variables 

included is also a result of the crossover and mutation operations. 

 The experiment has been carried out 10 separate runs on 4 different variable setups, 

each new setup containing fever variables than its predecessor. 

 

 

 

 

 

 

 

 

 

 

 

5. The results 

 The tables showing a summary of the results are presented in this paragraph.  

The total set of variables is as follows: 

Var.   Definition        Abbreviation      

V0 CashFlow/Total Debt     CFlow/Debt 

V1 Cash/Short Term Debt     Cash/S.T.D 

V2 Equity Capital/Total Capital    ECap/TotCap 

V3 (Result before taxes + Financial Costs)/Total Capital ResTF/TotCap 

V4 (Financial costs)/(Gross Revenue)   FinCost/G.Rev 
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V5 (Short Term Debt)/(Total Debt)    S.T.D/Debt 

V6 Log10(Total Capital)     Log10(TotCap)  

V7 Ln(Years in Business)     Ln(YiB) 

V8 (Drawing rights + Accounts Payable)/(Total Debt) (DR + AP)/Debt 

V9 (Losses on Accounts Receivable)/(Accounts Receivable) (Loss AR)/AR 

V10 (Assets put up as collateral)/(Total Capital)  (Coll.)/(TotCap)  

When reporting the results the abbreviations are used as reference to the variables.  

 

5.1 Setup 1 

Setup 1 consists of the whole set of variables V0 - V10, as defined in 5. 

The result  the 10 runs of Setup 1 is: 

(A “1” to the right of the variable marks that it is included in the resulting program) 

Setup 1  Run#   

Variable def. Var.# 1 2 3 4 5 6 7 8 9 10 Sum 

CFlow/Debt V0 1 1 1 1 1 1 1 1 1 1 10 

Cash/S.T.D V1 0 0 0 0 0 0 0 1 0 0 1 (Excl)

ECap/TotCap V2 0 1 1 1 0 1 0 1 1 1 7 

ResTF/TotCap V3 1 0 0 0 1 0 1 0 1 0 4 

FinCost/G.Rev V4 1 1 1 0 0 1 1 1 1 1 8 

S.T.D/Debt V5 0 1 0 1 0 1 1 1 0 0 5 

Log10(TotCap) V6 0 0 0 1 0 0 1 0 1 0 3 (Excl)

Ln(YiB) V7 0 0 0 0 1 0 0 0 0 0 1 (Excl)

(DR + AP)/Debt V8 1 1 0 1 1 1 0 0 1 1 7 

(Loss AR)/AR V9 1 0 1 0 0 1 1 1 1 1 7 

(Coll.)/(TotCap) V10 1 0 1 1 1 0 0 0 1 1 6 

Training Hitrate   62.4 65.6 64.7 63.7 65.8 64.7 68.2 65.2 64.8 64.5 65.0 

Validation   ”   58.5 59.0 61.5 57.7 59.0 58.0 56.0 56.0 57.9 60.2 58.4 

All variables included in less than  40% of the cases are chosen for elimination before the 

next Setup. Variables V1,V6 and V7 are therefore marked for exclusion before setup 2. 

Based on the training data set we are able to predict correctly in 65% of the cases, which is 

30% better than the “neutral” 50%-50% case. 

5.2 Setup 2 

Setup 2  Run#    

Variable def. Var.# 1 2 3 4 5 6 7 8 9 10 SUM 

Cflow/Debt V0 1 1 1 1 1 1 1 1 1 1 10 

ECap/TotCap V1 1 0 1 1 1 1 0 0 1 1 7 



 13

ResTF/TotCap V2 1 0 1 0 1 1 0 1 1 1 7 

FinCost/G.Rev V3 0 1 1 0 1 1 1 1 0 1 7 

S.T.D/Debt V4 0 1 0 0 0 1 0 1 0 0 3 (Excl)

(DR + AP)/Debt V5 1 1 1 1 0 0 1 1 0 1 7 

(Loss AR)/AR V6 1 1 1 1 0 0 1 0 1 0 6 

(Coll.)/(TotCap) V7 1 1 1 1 0 0 1 1 1 1 8 

Training Hitrate  65.2 63.5 64.3 64.3 67.5 67.3 64.7 64.8 65.6 63.9 65.1 

Validation   “  59.6 55.5 61.8 60.2 57.0 57.0 60.9 60.0 63.7 61.3 59.7 

 

Setup 2  shows a slight increase in average training hitrate (0.1 points) and a more substantial 

increase in average validation hitrate (1.3 points)  V4 is excluded ,and the remaining variables 

are included in setup 3. 

 

5.3 Setup 3 

Setup 3  Run#    

Variable def. Var #       1       2      3       4      5      6      7      8      9    10 SUM 

CFlow/Debt V0 1 1 1 1 1 1 1 1 1 1 10 

ECap/TotCap V1 1 1 1 0 0 0 1 0 0 1 5 

ResTF/TotCap V2 0 1 0 0 0 0 0 1 1 0 3 (Excl)

FinCost/G.Rev V3 0 1 1 0 1 1 0 1 1 1 7 

(DR + AP)/Debt V4 1 1 0 1 1 1 1 1 1 0 8 

(Loss AR)/AR V5 1 1 1 1 0 0 1 0 1 1 7 

(Coll.)/(TotCap) V6 1 1 0 1 1 1 1 1 0 1 8 

Training Hitrate  65.0 65.2 65.8 60.7 66.2 66.0 63.5 64.8 63.5 66.7 64.7 

Validation  “  61.8 59.8 57.0 56.6 56.6 61.1 61.5 57.1 59.6 63.7 59.5 

 

 

The average hitrates are falling back slightly,  (0.4 - 0.2 points) ,  but the they largely stay on 

the same level. Variable V2 is now eliminated, and the next setup is our final setup. 

5.4 Setup 4 

Setup 4  Run#   

Variable def. Var.#       1       2      3       4      5      6      7      8      9    10 SUM 

ECap/TotCap V0 1 1 1 1 1 1 1 1 1 1 10 

CFlow/Debt V1 0 1 0 0 1 1 0 1 0 0 4 

FinCost/G.Rev V2 1 1 1 1 1 1 1 1 1 1 10 

(DR + AP)/Debt V3 1 1 1 1 1 1 0 1 1 0 8 

(Loss AR)/AR V4 1 1 1 1 1 0 1 1 1 1 9 

(Coll.)/(TotCap) V5 0 1 1 1 1 0 1 1 1 1 8 
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Training hitrate  66.0 63.9 65.6 63.9 63.7 63.9 65.0 63.5 65.0 64.5 64.5 

Validation hitrate  60.5 61.1 59.2 64.3 58.6 60.0 61.1 61.3 61.5 64.8 61.2 

 

Setup 4 gives us the smallest difference between training and validation hitrates, and no 

variable is included in less than 40% of the cases.  The differences between the two hitrates 

over the setups are: 

Setup 1: 65.0 - 58.4 = 6.6 

Setup 2: 65.1 - 59.7 = 5.4 

Setup 3: 64.7 - 59.5 = 5.2 

Setup 4: 64.5 - 61.2 = 3.3 

The elimination of variables seems  to have the positive effect that we are evolving rules that 

perform more and more alike on the training and validation datasets. 

Runs 4 and 10 stand out, as the validation hitrates are slightly above the training 

hitrates. We have evolved two prediction rules which perform just as well on the out of 

sample validation data as they do on the training data. 

5.4.1  A closer study of  Run Number 10 and Run Number 4 

 Run number 10 is attracting attention because of high hitrates both in training and 

validation. The resulting Genetic Programming algorithm (the training algorithm) has been 

processed by means of “Matematica”, giving the following result: 

1) x = -(V0*(2.082 + V0))/(2*(0.6918 - 0.0268*V0 - 0.0248*V0^2 -1.025*V2)^2) + 2*V2 

2) y = 0.511 + 0.0234*(x+V4+2*V5) 

We observe some interesting non-linear properties in the x function, where x = f(v0,v2) 

 while y = g(x,V4,V5) is linear in x, V4 and V5. 

A negative x will contribute to a value of y < 0.5, i.e. a prediction of  “no problems ahead”, 

while a positive x will contribute to y ≥ 0, i.e. a prediction of potential problems. 

The graph shows that high equity capital  percentage leads to a decreasing x  

when V2 (Financial Cost/Gross Revenue) is increasing.  

As V0 (the Equity Capital Percentage) is decreasing,  we observe that this relationship  is 

reversed from  certain points of V0 on: An increasing V2 will now contribute to an increasing 

x  instead.  This seems to indicate that financial costs related to gross revenue (incurred as a 

result of leveraged investments)  does not cause potential problems as long as the equity 

capital percentage is above a certain level. Potential problems will, however, be increasingly 

present as v2 is increasing while V0 is decreasing. 

We have analyzed the x function and present a graph of it in fig. 5.4.1-1  

 Run number 4 is attracting similar attention as run number 10. The problem is that the 

evolved “training” algorithm is too complex to be resolved as a closed form expression. 
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This is not, however, the case with the “validation” algorithm. This algorithm is relatively 

simple : y=(-V0*0.0468)/((0.0892*V0^2-V5 *V0*0.0936)^2+ 0.3997+V3)+0.5183 

Choosing variable V5 (Collateral/TotalCapital) as parameter,  and letting V0 and V3 

((DrawingRights+AccountsPayable)/TotalDebt) vary, the graph of y = f(V0,V3,V5) 

will display the distinct features presented in fig. 5.4.1-2  

Increasing V0 creates an increasing “buffer zone” for predicting “no problems”   

as 3 increases. An increasing V3 will meet the distinct barrier displayed in the graph, in which 

case y will increase above 0.5, which means predicting a potential problem. The higher V0 

the longer V3 can travel along the V3 axis before the barrier is encountered. 

These two models (fig. 5.4.1-1,5.4.1-2) seem to display an analogy. In run 10 “financial 

costs” seems to play the same part as the sum of short term debt items plays in run 4. 

Decreasing V0 will create a decreasing distance to a barrier where the model switches form 

predicting “no problems” to predicting “potential problems ahead”. Increasing V2 (run 10) or 

V3 (run 4) is triggering the change in prediction ceteris paribus. A closer look at V3 / V4 

indicates that they are mirror images of each other. Increasing financial costs V3 is ceteris 

paribus a function of increasing leverage. In this case V3 contains debt items with relatively 

short time to maturity, and is usually is carrying higher financial costs than long term debt 

items. Taking this into consideration, the similarity in the two models make sense. The sum of 

financial costs is relatively sensitive to increase in short term debt items, therefore the GP 

system has discovered two alternative paths, using two different, but closely interrelated 

variables to evolve (in principle) similar models of prediction. 
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x= -(V0*(2.082 + V0))/(2*(0.6918 - 0.0268*V0 - 0.0248*V0^2 -1.025*V2)^2) + 2*V2 
y = 0.511 + 0.0234*(x+V4+2*V5)   
V0=EquityCapital/TotalCapital   
V2=FinacialCosts/Revenue   
V4=ReceivablesWriteoff/AccountsReceivable   
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V5=Collateral/TotalCapital   
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y=(-V0*0.0468)/((0.0892*V0^2-V5 *V0*0.0936)^2+ 0.3997+V3)+0.5183 
V0=EquityCapital/TotalCapital  
V3=(DrawingRights+AccountsPayable)/TotalDebt  
V5=Collateral/TotalCapital - introduced as parameter  
 

 

 

 

 

 

 

 

6. A comparison with the Logit statistical model 

A logit regression is based on a single equation where the dependent variable, Yt is a 0-1 

dummy variable.  It is a maximum likelihood estimation model where the cumulative 

distribution function is used to define choice probabilities, given by: 

 Pi =1/(1 + e - V) 

where:  

Pi is the estimated probability 

              N-1 
V = c +  Σ (b i · v  i) 
              i=0 
c and b i are the estimated coefficients as described below, 

v  i  are the observed variable values, 

N is the number of observations. 
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The idea behind this model is to choose, as estimates of c, b i  , the values of c, b i that 

maximize the probability of obtaining the sample that is actually observed.  

We have run a logit regression in the Shazam program package on the training data 

set  in setups 1-4, and we obtained the following results, based on 532 companies. 

6.1 Logit run setup 1 

VARIABLE ESTIMATED STANDARD T-RATIO   

NAME             COEFFICIENT ERROR    

V0  -0.15948 0.07962 -2.00290   

V1   0.00402 0.00585  0.68604   

V2   0.03190 0.08662  0.36829   

V3  -0.43330 0.52503 -0.82530   

V4   0.39029 0.38035  1.02610   

V5   0.03461 0.37083  0.09333   

V6  -0.29347 0.14998 -1.95680   

V7   0.12887 0.17864  0.72139   

V8   1.23350 0.39540  3.11960     

V9   0.33974 0.29690  1.14430     

V10   1.10530 0.45731  2.41710     

CONSTANT  0.10537 0.70514  0.14943     

           

 

6.1 Logit run setup 1 (continued..) 

  PREDICTION SUCCESS TABLE   

   ACTUAL     

   0 1        

  0 163 111   

PREDICTED 1 103 155   

      

NUMBER OF RIGHT PREDICTIONS  = 318.00 

PERCENTAGE OF RIGHT PREDICTIONS = 0.59774 

 

6.2 Logit run setup 2 

VARIABLE ESTIMATED STANDARD T-RATIO     

NAME  COEFF  ERROR       

V0  -0.13142 0.07166 -1.83400     

V1   0.03735 0.08115  0.46024     
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V2  -0.63142 0.51852 -1.21770     

V3   0.35188 0.37865  0.92929     

V4  -0.01800 0.36629 -0.04914     

V5   1.11770 0.38791  2.88130     

V6   0.31342 0.29421  1.06530     

V7   0.89699 0.43242  2.07440     

CONSTANT -0.33447 0.29498 -1.13390     

 PREDICTION SUCCESS TABLE   

     ACTUAL     

0 1    

0 158 114   

PREDICTED 1 108 152   

 

NUMBER OF RIGHT PREDICTIONS = 310 

PERCENTAGE OF RIGHT PREDICTIONS = 0.58271 

 

 

 

 

 

6.3 Logit run setup 3 

VARIABLE ESTIMATED STANDARD T-RATIO     

NAME  COEFF  ERROR       

V0  -0.13197 0.07103 -1.85810     

V1   0.03764 0.08101  0.46461     

V2  -0.63519 0.51279 -1.23870     

V3   0.35434 0.37712  0.93961     

V4   1.10920 0.34759  3.19120   

V5   0.31386 0.29402  1.06750   

V6   0.90503 0.40023  2.26130   

CONSTANT -0.34634 0.16920 -2.04690   

 

 PREDICTION SUCCESS TABLE   

   ACTUAL     

    0 1    

 0 158 114   
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PREDICTED 1 108 152   

 

NUMBER OF RIGHT PREDICTIONS  = 310 

PERCENTAGE OF RIGHT PREDICTIONS = 0.58271 

6.4 Logit run setup 4 

VARIABLE ESTIMATED STANDARD T-RATIO      

NAME  COEFF  ERROR         

V0   0.03339 0.07930  0.42105      

V1  -0.11654 0.07152 -1.62930      

V2   0.37849 0.39466  0.95902      

V3   1.13930 0.34676  3.28550      

V4   0.31952 0.29228  1.09320      

V5   0.91707 0.40154  2.28390      

CONSTANT -0.43096 0.15534 -2.77440      

 

 

 

 

 

6.4 Logit run setup 4 (continued...) 

PREDICTION SUCCESS TABLE    

 ACTUAL      

   0 1    

 0 161 114   

PREDICTED 1 105 152   

 

NUMBER OF RIGHT PREDICTIONS = 313 

PERCENTAGE OF RIGHT PREDICTIONS = 0.58835 

 

6.5 Summary 

When comparing the logit hitrates (Percentage of right predictions) and the GP training 

hitrates we see the following: 

Logit  GP Training 

Setup   hitrates  hitrates (Average) 

1 60  65.0 

2 58  65.1 
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3 58  64.7 

4 59  64.5 
 

GP obtains the highest score in all cases. An additional comment should be made at this point: 

Preliminary experiments showed an interesting result as to robustness in the two models. 

Running the analysis on a dataset containing significant out-liers (a small number of extreme 

values far away from the average value, and far outside one standard deviation) showed that 

GP discovered these anomalies and adjusted the algorithm accordingly, while the logit model 

showed notably lower hitrates. When removing the out-liers the logit result improved 

significantly, while the GP results hardly improved at all. This is a noteworthy property of the 

GP method: It can be expected to be robust against invasion of out-liers in the data. 

GP develops ways around the anomalies and encapsulates them, so to speak. 

Then, the next question to examine is: How well will the logit model perform on the 

validation data set, based on the estimated coefficients from the  training set in setup 4? 

 

 

 

 

That is:  We want to analyze  

 Pi =1/(1 + e - V) 

where 

V = -0.43096 + 0.03339·V0+0.11654·V1+0.37849·V2+1.1393·V3+0.31952·V4 

                    +0.91707·V5 

and  

V0,V1,--,V5 are values from the validation dataset.  This was accomplished by means 

of an MS Excel model,  computing a Pi value on each data line (one line per company).  

 

The Pi value is then transformed as follows: 

          | 1  when Pi >=0.5 
Pi‘ = < 
          | 0  when Pi  < 0.5 
 
Each Pi‘ is then compared to the [0,1] target value in the validation file, and whenever 

Pi‘ = Target Value a “hit” is counted, otherwise a “no hit” is counted.  

The result of this model is a hitrate of 0.5714, a bit less than the result on the training data set. 

 

7. Conclusion 
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The results of this study show that it is possible to predict with a reasonable degree of 

correctness that companies that this year have passed the auditors examination with flying 

colors, the next year will receive au unfavorable opinion, and that this years financial 

statements contain information that put us in a position to make such predictions. This result 

is expected to be of interest to the auditor’s community, to bankers and vendors following up 

the credit worthiness of a client , as well as to the tax authorities, and the credit authorities. If 

we are in a position to predict adverse or explanatory  auditor’s opinions the following year, 

we have also put ourselves in a more favorable position when it comes to avoiding financial 

problems. We have then managed to create a short-list of companies that deserve scrutiny 

beyond average measures. 
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