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Introduction 

This paper describes the workings of Discipulus Linear-Genetic-Programming 
software at a high-level. For a detailed, low-level discussion of evolution of ma-
chine code, see [20].   

    Some of the features in Discipulus that contribute to its extraordinary perform-
ance [3, 4, 5, 6, 9] are: 

• Discipulus implements a Genetic Programming algorithm. This algorithm 
determines the appropriate functional form and optimizes the parameters of 
the function. It is an ideal algorithm for complex, noisy, poorly understood 
domains. 

•  Discipulus performs Genetic Programming thru direct manipulation of bi-
nary machine code. This makes Discipulus about sixty to two-hundred times 
faster than comparable automated learning approaches [10]. 

• Discipulus performs multi-run Genetic Programming, intelligently adapting 
its own parameters to the problem at hand. 

    Each of these capabilities of Discipulus are discussed below. 

Genetic Programming 

Genetic Programming (GP) is the automatic, computerized creation of computer 
programs to perform a selected task using Darwinian natural selection. GP devel-
opers give their computers examples of how they want the computer to perform a 
task. GP software then writes a computer program that performs the task described 
by the examples. 
    GP is a robust, dynamic, and quickly growing discipline. It has been applied to 
diverse problems with great success—equaling or exceeding the best human-
created solutions to many difficult problems [11,3,4,2]. Good, detailed treatments 
of Genetic Programming may be found in [2,11].  

Discipulus™ [18] is a linear-genetic-programming (LGP) software package 
that operates directly on machine code.  The LGP algorithm in Discipulus is sur-
prisingly simple. It starts with a population of randomly generated computer pro-
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grams. These programs are the “primordial soup” on which computerized evolu-
tion operates. Then, GP conducts a “tournament” by selecting four programs from 
the population—also at random—and measures how well each of the four pro-
grams performs the task designated by the GP developer. The two programs that 
perform the task best “win” the tournament. 

The GP algorithm then copies the two winner programs and transforms these 
copies into two new programs via crossover and mutation transformation opera-
tors—in short, the winners have “children.” These two new child programs are 
then inserted into the population of programs, replacing the two loser programs 
from the tournament. GP repeats these simple steps over and over until it has writ-
ten a program that performs the selected task.   

GP creates its “child” programs by transforming the tournament winning pro-
grams. The transformations used are inspired by biology. For example, the GP 
mutation operator transforms a tournament winner by changing it randomly—the 
mutation operator might change an addition instruction in a tournament winner to 
a multiplication instruction. Likewise, the GP crossover operator causes instruc-
tions from the two tournament winning programs to be swapped—in essence, an 
exchange of genetic material between the winners. GP crossover is inspired by the 
exchange of genetic material that occurs in sexual reproduction in biology. 

Genetic Programming using Direct Manipulation of Binary 
Machine Code 

Machine-code-based, LGP is the direct evolution of binary machine code through 
GP techniques [12-17]. Thus, an evolved LGP program is a sequence of binary 
machine instructions.  For example, an evolved LGP program might be comprised 
of a sequence of four, 32-bit machine instructions.  When executed, those four in-
structions would cause the central processing unit (CPU) to perform operations on 
the CPU’s hardware registers.   Here is an example of a simple, four-instruction 
LGP program that uses three hardware registers: 

 register 2 = register 1 + register 2 
 register 3 = register 1 - 64 
 register 3 = register 2 * register 3 
 register 3 = register 2 / register 3 

While LGP programs are apparently very simple, it is actually possible to 
evolve functions of great complexity using only simple arithmetic functions on a 
register machine [15,17].  

After completing a machine-code LGP project, the LGP software decompiles 
the best evolved models from machine code into Java, ANSI C, or Intel Assembler 
programs [18]. The resulting decompiled code may be linked to the optimizer and 
compiled or it may be compiled into a DLL or COM object and called from the 
optimization routines. 
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The linear machine code approach to GP has been documented to be between 
60 to 200 times faster than comparable interpreting systems [10,12,17]. As will be 
developed in more detail in the next section, this enhanced speed may be used to 
conduct a more intensive search of the solution space by performing more and 
longer runs. 

Multiple-Run Genetic Programming 

Discipulus is a multiple-run genetic-programming system. That is, it is designed to 
intelligently perform many runs. While doing so, it intelligently adapts its parame-
ters to the problem at hand. 
    The importance of multi-run genetic-programming derives from the fact that 
genetic-programming is a stochastic algorithm. Accordingly, running it over-and-
over with the same inputs usually produces a wide range of results, ranging from 
very bad to very good. For example, Fig. 2 shows the distribution of the results 
from 30 runs of LGP on the incinerator plant modeling problem mentioned in the 
introduction—the R2 value is used to measure the quality of the solution. The so-
lutions ranged from a very poor R2 of 0.05 to an excellent R2 of 0.95. 

 
Our investigation to date strongly suggests the typical GP distribution of results 

from multiple GP runs includes a distributional tail of excellent solutions that is 
not always duplicated by other learning algorithms. For example, for three sepa-
rate problem domains, an GP system produced a long tail of outstanding solutions, 
even though the average GP solution was not necessarily very good. By way of 
contrast, and in that same study, the distribution of many neural networks runs on 
the same problems often produced a good average solution, but did not produce a 
tail of outstanding solutions like GP [8.4].  

Fig. 1. . Incinerator Con-
trol Data. Histogram of 
Results for 30 LGP Runs 
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Figure 3 shows a comparative histogram of LGP results versus neural network 

results derived from 720 runs of each algorithm on the same problem. Better solu-
tions appear to the right of the chart. Note the tail of good LGP solutions (the bars) 
that is not duplicated by a comparable tail of good neural network solutions. This 
same pattern may be found in other problem domains [id]. 

 
To locate the tail of best solutions on the right of Figure 3, it is essential to per-

form many runs, regardless whether the researcher is using neural networks or 
LGP.  This is one of the most important reasons why a machine-code approach to 
GP is preferable to other approaches. It is so much faster than other approaches, 
that it is possible to complete many runs in realistic time frames on a desktop 
computer. That makes it more capable of finding the programs in the good tail of 
the distribution. 
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