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This chapter describes recent advances in genetic programming of machine code. Evolutionary pro-
gram induction of binary machine code is one of the fastest1 GP methods and the most well studied
linear approach. The technique has previously been known as Compiling Genetic Programming
System (CGPS) but to avoid confusion with methods using an actual compiler and to separate the
system from the method, the name has been changed to Automatic Induction of Machine Code with
Genetic Programming (AIM-GP). AIM-GP stores individuals as a linear string of native binary ma-
chine code, which is directly executed by the processor. The absence of an interpreter and complex
memory handling allows increased speed of several orders of magnitudes. AIM-GP has so far been
applied to processors with a fixed instruction length (RISC) using integer arithmetics. This chapter
describes several new advances to the AIM-GP method which are important for the applicability of
the technique. Such advances include enabling the induction of code for CISC processors such as the
most widespread computer architecture INTEL x86 as well as JAVA and many embedded processors.
The new technique also makes AIM-GP more portable in general and simplifies the adaptation to any
processor architecture. Other additions include the use of floating point instructions, control flow in-
structions, ADFs and new genetic operators e.g. aligned homologous crossover. We also discuss the
benefits and drawbacks of register machine GP versus tree-based GP. This chapter is meant to be a
directed towards the practitioner, who wants to extend AIM-GP to new architectures and application
domains.

6.1 Introduction

In less than a generation the performance of the most powerful calculating device has
grown at least a million fold. Moreover, the price of computers has dropped enormously

1Here, speed refers to the time it takes to evaluate an individual. Whether AIM-GP is faster on aper generation
basisis something that is discussed in section 6.6.
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during the same period and with the introduction of the IBM-PC in 1981 there is a de-facto
standard of low-cost computers affordable to most people. Today it is possible to buy a
complete one-chip computer for less than the price of one hour of work.

All of these factors have given birth to a phenomenon called the software crisis. The
relative costs of hardware and software have changed dramatically in the last forty years.
In 1955 software costsaccounted for one tenth of a project’s cost; today it is hardware that
accounts for one tenth of a project’s cost. This reduction in the cost of hardware has further
fueled the demand for software. These days, the demand for software greatly outstrips its
supply. Studies show that the demand for software, outstripped supply by a ratio of 3:1.
This situation—where the demand for software exceeds supply—is commonly referred to
asthe software crisis.

A consequence of the software crisis is that 99% of all possible CPU cycles are not used.
If we all had a free supply of tailor made software, we could probably find useful work for
a large part of the available CPU cycles especially since there is very little extra wear on
the processor when it is working.

A related problem is that since the programming of computers are so expensive com-
pared to the CPU cycles to execute them, very little effort is spent on making programs as
efficient as possible. A system that could be coded in assembler in a few hundred KB with
a very fast execution performance is instead produced with high-level tools and several
megabytes of redundant code segments. Given the current cost of software development in
relation to the cost of processing power it is a sound practice. However, if we had a way of
programming automatically and inexpensively on a low level, we could get performance
several orders of magnitude higher from our present computers.

Any methods to automatically generate feasible computer programs would be beneficial.
Indeed any method that can fill all these redundant processor cycles with something truly
useful will be beneficial to society. If we in addition could automatically program the
computer on a low level, we could make use of the processing power of any computer in a
completely new way.

Today’s society is faced with a situation which—from an information processing view—
has similarities to Gutenberg’s 15th century Europe, where a sudden abundant supply of
paper forced the invention of the printing press since there were suddenly not enough
scribes to fill the paper supply. It has been argued that Gutenberg created the modern era
by the invention of the printing press.

In this chapter, we describe advances in a method for automatic generation of computer
programs at the lowest level. It is, of course, not the solution to the problems of the
software crisis, but it may, like other GP approaches, be an early small step on a road
where computers eventually can program themselves, a utopia that would revolutionize
society, as much as, or more than the printing press once did.



6.1.1 Evolutionary Induction of Machine Code

All a computer can do is to process machine language and all we do with computers —
including genetic programming — will in the end be executed as machine code. In some
cases it is advantageous to directly address the machine code with genetic programming
and to evolve machine code. Machine code programming is often used when there is a
need for very efficient solutions, e.g. in applications with hard constraints on execution
time or memory usage. In general the reasons for evolving machine code – rather than
higher level languages are similar to the reasons for programming by hand in machine
code or assembler:

1. The most efficient optimization is done at the machine code level. This is the lowest
level for optimization of a program and it is also where the highest gains are possible.
The optimization could be for speed, space or both. Genetic programming could be used
to evolve short machine code subroutines with complex dependencies between registers,
stack and memory.

2. High level tools could simply be missing for the target processor. This is sometimes the
case for processors in embedded control.

3. Machine code is often considered to be hard to learn, program and master. This may be
a matter of taste but it could sometimes be easier to let the computer evolve small machine
code programs instead of learning to master the machine code programming technique.

4. Another reason to use a linear approach with side effects is that there is some evidence
that the linear structure and side effects may yield a more efficient search for some appli-
cations, see section 6.6.

Some of these benefits can be achieved with a traditional tree-based GP system evolving
machine with a constrained crossover operator but there are additional reasons for working
with binary machine code:

� The GP algorithm can be made very efficient by keeping the individual programs in
the population in binary machine code. This method eliminates the interpreter in the
evaluation of individuals. Instead evaluation consists of giving control directly to the
machine. There is usually a significant speed–up with this technique.

� A binary machine code system is often memory efficient, compared to a traditional
GP system. The small system size is partly due to the fact that the knowledge of the
language used is supplied by the CPU designer in hardware – hence there is no need
to define the language and its interpretation. Another reason for the compactness
is that the system manipulates the individual as a linear array of op-codes, which is
more efficient than the more complex symbolic tree structures used in traditional GP



systems. The final reason for the low memory consumption is the large amount of
work done by the CPU manufacturer to ensure that the machine instruction codes
are efficient and compact.

� The memory consumption is usually more stable during evolution with less need for
garbage collection etc. This could be an important property in real time applications.

� The use of binary code also ensures that the behaviour of the machine is correctly
modelled since the same machine is used during fitness evaluation and in the target
application.

Today there exist a spectrum of GP machine code approaches:

1. One of the earliest approaches to the evolution of computer programs similar to machine
code is the JB language and system [Cramer, 1985]. Cramer formulated his method as a
general approach to evolve programs but his register machine language is in many ways
similar to a simple machine code language.

2. One of the more extensive systems for evolution of machine code is the GEMS system
[Crepeau, 1995]. The system includes an almost complete interpreter for the Z-80 eight bit
micro-processor. The Z-80 processor has 691 different instructions and GEMS implements
660 instructions excluding only special instructions for interrupt handling etc.

3. Huelsberger has used a formal approach to evolve code for a virtual register machine
(VRM). His system is implemented in the functional formal language Standard Meta Lan-
guage (SML). GP results are compared favorably with results using random search [Huels-
berger, 1996].

4. The theme of this chapter: AIM-GP (formally known as CGPS) manipulates the binary
code in memory directly with no difference in genotype and phenotype [Nordin, 1997]
resulting in a very efficient implementation.

All of these methods use a linear representation of the genome in contrast to the common
tree-based GP representation. The linear representation is natural to the imperative form
of languages based on instructions.

All methods can, in principle, be classified into three categories:

1. Approaches working with small virtual (toy) machine for research purposes, such as the
VRM and JB approach above.

2. Approaches working with a simulation of a real machine or with a virtual machine
designed for real applications, such as the GEMS system.

3. Approaches manipulating the binaries of a real machine such AIM-GP which this Chap-
ter is about.



AIM-GP has so far been applied to processors with a fixed instruction length (RISC)
using integer arithmetics. This chapter describes several new advances in the AIM-GP
method enabling the induction of code for CISC processors, such as the most widespread
computer architecture INTEL/PC and many embedded processors. The new technique also
makes AIM-GP more portable in general and simplifies the adaptation to any processor
architecture. Other additions include the use of floating point instructions, control flow
instructions, ADFs and new genetic operators e.g. aligned homologous crossover.

AIM-GP can be seen as a large alphabet genetic algorithm operating on a variable length
linear string of machine code instructions. Each individual consists of a header, body,
footer and buffer. All genetic operators are applied in the body, see Figure 6.1. For basic
details regarding AIM-GP see [Nordin, 1997]. The approach of direct binary manipulation
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Figure 6.1
Structure of a program individual

has proved to be around 40 times faster than comparable tree based interpreting systems
due to the absence of any interpreting steps. The reason for the considerable speed-up is
revealed if we study the details of how an interpreter works.

6.2 Why is Binary Manipulation so Fast?

There are several reason to why abinary manipulating approachis many times faster than
a GP approach built on an interpreter. Below, we briefly look at an estimated lower bound
to speed differences.

Let us assume that we would like to evaluate the expressionx = y + z as a part of a
GP individual evaluation. For an interpreting system, this normally requires at least five
different steps:

1. Load operandy from memory (e.g. stack)

2. Load operandz from memory

3. Look up symbol “+” in memory and get a function pointer

4. Call and execute the addition function

5. Store the resulting value (x) somewhere in memory



A memory operation normally takes at least 3 clock cycles for the CPU if we have a
cache hit. Our three memory operations will therefore take 9 clock cycles. Looking up the
function pointer takes another memory access in an ideal hash table which means 3 clock
cycles. Calling and executing a function usually takes at least 6-15 additional clock cycles
depending on compiler conventions and type of function. All in all, this makes about 20
clock cycles to evaluate thex = y + z expression. The compiling system can, on the
other hand, execute thex = y + z expression as a single instruction in one (1) clock cycle
which enables us to conclude that a Compiling Genetic Programming System should be at
least 20 times faster than an interpreting system. This in the same ballpark as the 40 times
in empirical measurements [Nordin 1997]. All timing issues on modern CPUs are very
sensitive to cache dependencies.

6.3 Motivation

The DNA molecule in nature has a linear structure. It can be seen as a string of letters in a
four-letter alphabet. It is furthermore subdivided into genes. Each gene codes for a specific
protein. A gene could therefore be seen as a segment of the total genetic information
(genome), which can be interpreted, and has a meaning, in itself. In AIM-GP ageneis
a line of code representing a single machine code instruction. Such an instruction is also
syntactically closed in the sense that it is possible to execute it independently of the other
genes. So this method has some analogy to the gene concept in nature – it consists of a
syntactically closed independent structure, which has a defined starting, and ending point.
The gene concept in nature and in AIM-GP is in both cases treated as a separate structure
from the whole genome structure. AIM-GP uses crossover for manipulations of whole
genes/instructions and mutation for manipulation of the inside of the gene/instruction.

AIM-GP can also be seen as a technique directed towardsimperativeprograms while
the tree based GP system is inspired byfunctionalprogramming approaches. Imperative
programs consist of instructions affecting astateby for example assignment of variables.
Most commercially used programming languages are imperative, e.g. C++, Pascal and
Fortran. There is also a trend in hierarchical GP to view the tree more like a list of imper-
ative instructions operating on state, than a function tree. This includes approaches using
memory andcellular encoding[Gruau, 1995]. A linear approach could be more natural in
many of these applications.

The motivation for this chapter is to compile and present recent advances in the AIM-GP
approach that could be beneficial to the practitioner. AIM-GP has in a few years grown
from a curiosity to a method suitable for attacking hard real-world problems. Below we
will present design changes and additions that have been important for the applicability of
the technique:

� Any GP system is dependant onsyntactic closure. It must sustain evolution without
resulting in a syntax error. The first AIM-GP method could only handle instructions



for a reduced instruction set computer(RISC) architecture. A RISC processor has
instructions of equal length and a less complex instruction grammar. However, many
of the most popular computer architectures are built on CISC technology. A CISC
(Complex Instruction Set Computer) has instructions of varying length and usually
a messier instruction syntax. ThePC de-facto-standardis built on CISC and so are
also many embedded applications. Therefore, being able to handle this processor
family is important for any GP paradigm. In Section 6.4.1 we introduceblocked
AIM-GP which among other beneficial properties runs well on CICSs.

� To address pattern finding, prediction and data minding problems in real–world nu-
merical data sets we usually must be able to process floating point data. The rapid
evolution of floating point units (FPUs) and their inclusion in PC and workstation
processors has lead to new possibilities with AIM-GP. In is now possible to address
floating point problems in an uncomplicated and efficient manner, see Section 6.4.3.

� How to manage the addition of instructions from the latest versions of CPUs. For
instance the conditional load of the Pentium Pro and Pentium II.

� There have previously been ADFs present in the AIM-GP approach but they have
had limited value due to complex implementation and various overheads. However,
with the addition of blocks it is possible to use ADFs in a more efficient way, see
Section 6.4.4.

� At the end of this section we briefly discuss benefits of the register machine approach
compared to the tree-based approach. This should be seen as a contribution to the
debate regarding how useful ADFs really are in register machine GP.

6.4 Additions to the AIM-GP Approach

Most new additions are directed to the use of AIM-GP in CISC architectures, while others
e.g. floating point instructions can be equally applicable for use with fixed length instruc-
tion AIM-GP.

6.4.1 Blocks and Annotation

Previously AIM-GP has only been used with a single machine code instruction in each
gene. This works well for Reduced Instruction Set Computers (RISC) where all instruction
shave the same length. However, many well-used computer architectures operate with
variable length instructions, for instance INTEL 80X86, Motorola 68XXX and to some
extent Java Bytecode. Many of the CICS architectures are used in embedded systems
where the opportunity to evolve machine code may have many applications. CICS have
benefits such as a large instruction set with many special instructions important for the



capabilities of binary machine code induction. Examples of such instructions are LOOP
and STRING instructions. For instance, the INTEL X86 has a set of powerful instructions,
which are never found on RICSs:

� CMPS/CMPSB/CMPSW/CMPSD–Compare String Operands. These instructions
can be used to compare strings for example in text search applications.

� STOS/STOSB/STOSW/STOSD Store String, LODS/LODSB/LODSW/LODSD-Load
String and MOVS/MOVSB/MOVSW/MOVSD–Move Data from String to String.
Can be used when copying strings for instance in text data mining.

� LOOP/LOOP cc–Loop instructions allows for very compact and efficient loop con-
structs.

Having single powerful instructions are important for AIM-GP since it is much more
efficient to use a single instruction as part of the function set than linking in an external
function in AIM-GP.

In order to use AIM-GP with CICSs we must have one or many instructions inside
the gene while each gene still has a fixed length. The fixed length gene simplifies the
crossover operator and memory management. We call such a gene containing more than
one instruction: ablock. Fixed length blocks allow crossover to calculate and access each
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Figure 6.2
Fixed sized blocks in an individual.

crossover point directly. A block will contain one or more machine code instructions,
which are padded to the fixed length by one-byte NOPs (No Operation Instructions). The
usual crossover operator in AIM-GP is a two-point string crossover. However, the use of
fixed sized blocks with variable size instructions also enables other crossover methods such
as aligned homologous crossover, as seen below Section 6.4.2.



The size of the block is a settable a parameter to the system. The block size must be
set so that the largest instruction used will fit in the block. However it should be small
enough to allow the crossover operator to do useful recombination. The crossover oper-
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Figure 6.3
The Crossover operator using blocks.

ator works blindlyin betweenthe blocks while the mutation operates within blocks and
therefore needs to know the boundaries of instructions. The point where one instruction
finishes and another one starts can be figured out by looking at the opcode ofeach instruc-
tion. However, to simplify the implementation we have added extra information to each
instruction in a separate array. Thisannotationarray gives information within the block of
instruction boundaries. The annotation information is a short binary string. Each binary
digit corresponds to abyte in the block. If the binary digit is a1 then a new instruction
starts in this byte. If the binary digit is0 then the previous instruction continues in this
byte, see Figure 6.4.
The explicit instruction boundary information can be used toglueinstructions together to

compound instructions. Such glued instructions are very useful since they can be seen as
small and very efficient user-defined functions. Compound instructions are also useful for
special tricks such as ADFs, jumps and string manipulation. Blocks also have benefits for
applications on RISC architectures. Especially the ability to glue instructions together can
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Figure 6.4
Fixed sized blocks and annotation information showing instruction boundaries.

yield more efficient constructs than using functions calls for the same feature. Previously,
specialleaf functions callsin assembler, has been used to achieve user-defined-functions,
ADFs, and protected functions [Nordin 1997]. However, quite some overhead is involved
in a function call and it is also a more complex solution. A glued block does the same job
and usually more efficient than using function calls.
Blocks may also have other direct positive effects in the ability to form realbuilding blocks
which are kept together during crossover. One such often-emerging block is ABS followed
by SQRT. The absolute value ABS will ensure that the SQRT function (which only accepts
positive numbers) will return a number and not an error symbol. A block consisting of
these instructions is nothing but a protected function, which spontaneously has evolved
through mutation.

A CISC architecture CPU usually has fewer registers than a RISC. The CPU compen-
sates for this by more efficient instructions for mixing memory cells in memory with reg-
ister operations. Such operations can be especially efficient if thecashis aligned and then
almost as fast as a register to register operation. The convenient memory access makes it
easy to efficiently expand the number of inputs. Currently our system uses up to 63 inputs
but in principle is not the system limited in the number of possible input variables. Pre-
viously, with the RISC approach the maximal inputs was around 14 variables, so this is a
significant improvement. AIM-GP has with this version been used for data mining appli-
cations with wide input sets consisting of 30 columns or more. In such applications GP
seems to work well without any specific externalvariable selection algorithm. Instead GP
does an adequate job selecting relevant input columns and omitting irrelevant inputs from
the resulting program. The code below shows how the machine code can be disassembled
into compilable C-code. The example also illustrates how values are fetched and used from
memory. Thef array stands for the eight registers while thev array represents the input



array. The instructionf [0] = v[27] means that register0 should be assigned the value of
input number27 from memory.

#define LOG2(x) ((float) (log(x)/log(2)))
#define LOG10(x) ((float) log10(x))
#define LOG_E(x) ((float) log(x))
#define PI 3.14159265359
#define E 2.718281828459

float DiscipulusCFunction(float v[])
{

double f[8];
double tmp = 0;

f[1]=f[2]=f[3]=f[4]=f[5]=f[6]=f[7]=0;
f[0]=v[0];

l0: f[0]-=f[0];
f[0]*=f[0];
l1: f[0]-=0.5;
l2: tmp=f[1]; f[1]=f[0]; f[0]=tmp;
f[0]-=f[0];
l3: f[0]*=f[0];
l4: f[0]+=f[0];
f[0]=fabs(f[0]);
l5: tmp=f[0]; f[0]=f[0]; f[0]=tmp;
f[0]*=f[0];
l6: f[0]*=0;
l7: f[0]-=0.5;
l8: f[0]*=v[27];
l9: f[0]*=f[0];
l10: f[0]*=v[32];
l11: f[0]*=v[4];
l12: f[0]+=f[1];
l13: f[0]+=f[0];
f[0]=fabs(f[0]);
l14: f[0]-=f[1];
f[0]+=f[1];
l15: f[0]*=v[61];
l16:
l17:

Java is a platform independent open language withacceleratingpopularity. Most Java
programs today are run on a processor with another machine code. In order to execute
a binary Java program the system either has to interpret it in a Java virtual machine or



compile it to the host language for instance using a just in time (JIT) compiler. Processors
designed to directly execute Java code are just beginning to appear on the market.
The binary machine code of Java is calledbytecode. The interesting feature of this code is
that almost all instructions occupy only a single byte. This contrasts with other trends in
CPU design with long RISC instructionsand even longer compound instructions. However,
the short instruction length enables very compact programs, important for distribution, for
instance of applets on the Internet.
When evolving Java bytecode it is feasible to use additional annotation information. The
Java virtual machine is a stack machine.Current stack depthis an example of annotation
information kept with every instruction in our Java AIM-GP approach. We have also used
annotation information the keep track of jump offsets in the Java system. However, if too
much annotation information is needed then it is questionable if the system does not really
contain acompilertranslating annotation information into an executable. If this is the case
then manipulating binary code might not be worth the extra complexity. So, there is a
trade-off between annotation information, expressiveness and efficiency.

6.4.2 Homologous Crossover

Biological crossover ishomologous. The two DNA strands are able to line up identical or
very similar base pair sequences so that their crossover is accurate down to the molecular
level. But this does not exclude crossover at duplicate gene sites or other variations, as long
as very similar sequences are available. In nature, most crossover events are successful —
that is, they result in viable offspring. This is in sharp contrast to GP crossover, where 75%
of the crossover events are what would be termed in biologylethal.
We have implemented a mechanism for crossover that fits the medium of GP and that may
achieve the same results as homologous crossover in biology. So the question is what
properties does homologous crossover have?

� Two parents have a child that combines some of the genomes of each parent.

� The natural exchange is strongly biased toward experimenting with feautres ex-
changing very similar chunks of the genome — specific genes performing specific
functions — that havesmall variations among them, e.g., red eyes would be ex-
changed against green eyes, but not against a poor immune system.

Homologous crossover exchanges blocks at the same position in the genome allowing cer-
tain meaning to be developed at certain loci. One of the criticisms of standard GP is that
the crossover operator is too brutal. It performs crossovers exchanging any sub-tree no
matter what context the sub-tree operated in. The standard crossover operator exchanges
sub-trees with such little selection that crossover could be argued to be more of a mutation
operator and GP more like a hill-climbingalgorithm with a population than a system work-
ing with recombination. The same argument can be made regarding the usual two-point
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The homologous crossover operator with blocks.

string crossover in AIM-GP [Nordin 1997]. In nature we do not see this kind of crossing
over apples and pies or e.g. we do not see the foot-genes crossed over with the nose-genes.
One of the methods that nature uses to achieve this is alignment. The chromosomes are
aligned before a crossover takes place. This guarantees that only genes describing simi-
lar features will be exchanged during sexual recombination. By making this homologous
crossover operator the dominant operator in AIM-GP we observed significantly improved
search performance.

An implementation efficient crossover operator is also important to AIM-GP. The execu-
tion of the individual is so fast that even the time to perform crossover becomes significant
(20%) and homologous crossover is faster since it exchanges segments with the same size



and therefore no blocks need to be shifted forwards or backwards.
Homologous crossover can be seen as an emergent implicit grammar whereeach posi-

tion, loci, represents a certaintype of featurein many ways similar to howgrammar based
GP systems work [Banzhaf et. al. 1997].

Homologous crossover is also easy to formulate and implement in a linear imperative
system such as AIM-GP since two stands can be lined up just as in the DNA case. With tree
based systems it is not as easy to find a natural way to align the two parents. However, the
one-point crossover operator presents an feasible way [Poli and Langdon, 1998]. Here the
nodes of the two parents are traversed to identify part with the same shape (arity) and this
way the trees can be partly aligned. Such a tree based system has an interesting property
in that it allows the insertion of a sub-trees of any size without violating alignment. This is
not as easy in a linear system such as DNA or AIM-GP. The only possibility to achieve the
same effect in AIM-GP is to useADFs. Using ADFs will allow the homologous insertion
of a block calling an ADF with arbitrary size, see Section 6.4.4. A mechanism like this is
important since a new individual with very different alignment will have severe difficulties
surviving in a population with a majority of differently aligned individuals. In this way
alignment can be seen as a kind of speciation.

We also observed lessbloat or code growth in the system using homologous crossover
than with the normal crossover operator. This makes sense if bloat is partly seen as a
defence against the destructive effects of crossover. A reasonable hypothesis is that the
homologous crossover exchanging blocks at the same position will be less destructive after
some initial stabilizing of features at loci.

6.4.3 Floating Point Arithmetics

Many conventional GP systems operate with floating point arithmetics while AIM-GP so
far has used the ALU (Integer and Logic Unit). However, floating point numbers have
many benefits. One of the benefits of the Floating Point Unit (FPU) is access to efficient
hardware, which implements common mathematical functions such as SIN, COS, TAN,
ATN, SQRT, LN, LOG, ABS, EXP etc. as single machine code instructions. There are
also a dozen well-used constants such as PI available. Another good feature is that all
floating point units adores to a common standard on how to represent numbers and how
certain functions (such as rounding) should be performed. The standard also describes
what to do with exceptions e.g. division by zero. All exceptions are well-defined and
results in an error symbol (for instance INF) being put in the result register. This results
in less problems with protected functions since execution continues with the symbol in the
register and when the function returns the symbol can be detected outside the individual
and punished by a bad fitness.

Processor manufacturers have recently discovered the benefits ofconditional loadsin
the FPU. This instruction loads a value into a register if a certain condition holds. The
calculation following the conditional load can then take very different paths depending



on if the value was loaded or not. This way the instruction works as an efficient single
instructionif-statement. Only the latest version of the CPUs (e.g. Pentium Pro/Pentium II
and Ultra SPARC) has this instruction.

Even if the FPUs have many powerful new instructions it is still important to select
instructions with care. For instance the FPU of the INTEL processor which has eight
registers organized as a stack. The stack does however cause some problems and best
results in evolution is performed by omitting instructions which pushes or pops on this
stack since it seems to degrade search performance. Instead it is more efficient to use the
registers as normal registers machine registers and load input directly into them.

Constants are more important when dealing with floating point applications. In integer
systems there areimmediate datainside the instructions which can be used for constants
in the individual. The immediate data field can be mutated to explore any integer con-
stant during evolution. In the floating-point instruction set there are no constants in the
instruction format. Instead constants must be loaded from memory much like the input
variables.

Another possible feature when using CISCs and floating point units is the ability to use
multiple outputs. The transfer of a function’s result on a CISC floating point application
is communicated through memory. This technique enables the use of multiple outputs by
assignment of memory in the individual. In principle there is no limit on the number of
items in the output vector. A multiple output system is important in for instance control
applications where it is desirable to control for instance several motors and servos.

6.4.4 Automatically Defined Functions

Even though the value of ADFs has been questioned in a register machine approach such as
AIM-GP (see Section 6.6 below) we feel it is likely to have benefits in connection with ho-
mologous crossover. Previously ADFs has been achieved by calling a special subfuncion, a
leaf function, which then in turn calls one of a fixed number of ADFs in the individual, see
Figure 6.6. The reason for having an extra function in-between is that necessary boundary
checks can be made in the middle functions. Calling a function represents a considerable
overhead and ADFs can be achieved more elegantly with blocks. We need two blocks
to realize ADFs. One block containing acall and one containing areturn instructions.
These blocks are then arbitrarily inserted into the individual. To work properly during
evolution there need to be control instructions checking that there is no stack underflow or
stack overflow. The allowed calling depth needs only to be a few levels. The blocks are
initialised to call forward 5 or 10 blocks. A second check is therefore needed to make sure
that no call is made past the boundary of the individual. In this way there is no special
ADF structure in the individual instead are the subroutines chaotically intermixed in a sin-
gle individual. The benefits are a larger freedom for the system to control how many ADFs
will be used and in what way. The block approach is also faster since the function calls in
body to ADFs are eliminated.
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Figure 6.6
The structure of a population consisting of individuals with two ADF parts and a main part in AIM-
GP

6.4.5 Discipulus

Discipulus is an example of an AIM-GP PC implementation. The features of Discipu-
lus include: many of the features discussed in this chapter plus a spreadsheet interface to
training data, graphs of training data and training statistics, disassembling of individuals to
C++ or Assembler or excel formulas as well as automatic removal of introns. A demon-
stration version of Discipulus can be downloaded fromhttp://www.aimlearning.com, see
also Figure 6.7.

6.5 AIM-GP Plattform Summary

AIM-GP has been ported to several different platforms built on different architectures.
So far implementations exist for the following platforms using five different processor



Figure 6.7
The Discipulus AIM-GP system.

families:

� SUN-SPARC

� MOTOROLA POWER-PC

� INTEL 80X86

� Sony PlayStation

� Java Bytecode

The POWER-PC, Sony PlayStation and SPARC are all RISC architectures while INTEL
80X86 is a CISC architecture. JavaByte code has a handful of instructions longer than a
byte and could therefore be seen as a CISC even though it is possible to implement a system
using only the instructions of the fixed one-byte size.

The POWER-PC version has been applied both on a Macintosh architecture and in a
PARSYTEC parallel machine.



6.6 AIM-GP and Tree–Based GP

The greatest advantage of AIM-GP is the considerable speed enhancement compared to
an interpreting system, as discussed above. An interesting question is whether the perfor-
mance of the register machine system is comparable on aper generation basis. To address
this question we carefully tuned two GP systems—one standard tree–based and one regis-
ter based—and evaluated their performance on a real world test problem. The results, over
10 runs for each system showed that the register machine system converges to an equal or
better fitness value than the tree–based system. This indicates that the use of register ma-
chine GP does not have to be only motivated by implementation advantages due to binary
manipulation.
A four line program in machine language may look like this:

(1) x=x-1
(2) y=x*x
(3) x=x*y
(4) y=x+y

-1

*

+

*

x

y
Figure 6.8
The dataflow graph of the(x� 1)2 + (x� 1)3 polynomial



The program uses two registers,x; y, to represent the function. In this case the polynomial
is:

g(x) = (x� 1)2 + (x� 1)3 (6.1)

The input to the function is placed in registerx and the output is what is left in register
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Figure 6.9
The representation of(x� 1)2 + (x� 1)3 in a tree–based genome

y when all four instructions have been executed. Registery is initially zero. Note that the
registers are variables that could be assigned at any point in the program and registery for
example is used as temporary storage in instruction number two (y = x�x) before its final
value is assigned in the last instruction (y = x + y). The program has more of a graph
structure than a tree structure, where the register assignments represent edges in the graph.
Figure 6.8 shows a dataflow graph of the(x � 1)2 + (x � 1)3 computation and we can
see that the machine code program closely corresponds to this graph. Compare this to an
equivalent individual in a tree–based GP system as in figure 6.9. It has been argued that
the more general graph representation of the register machine is an advantage compared to
the tree representation of traditional GP. For this reason there is less need to use an explicit
ADF feature in AIM-GP

The temporal storage in registers can be seen as a “poor man’s ADF” The reuse of calcu-
lated values can, in some cases, replace the need to divide the programs into subroutines or
subfunctions. It is therefore possible that there exist other advantages of register machine
program induction, which hold for a more general system, implemented with an interpreter
for the register machine language.
To answer this question we tried to find a suitable test problem, a real-world problem
with some known properties in the literature. The problem finally chosen is from the
speech recognition domain which has been used previously as a benchmark problem in
the machine learning community, with connectionist approaches. The problem consists of
pre-processed speech segments, which should be classifiedaccording to type ofphoneme.



The PHONEME recognition data set contains two classes of data: nasal vowels (Class
0) and oral vowels (Class 1) from isolated syllables spoken by different speakers. This
database is composed of two classes in 5 dimensions [ELENA,1995]. The classification
problem is cast into a symbolic regression problem where the members of class zero have
an ideal value of zero while the ideal output value of class one is 100.

The function set consisted—in both cases—of the arithmetic operator times, subtract,
plus and the logical shift left (SLL) and logical shift right (SRL) operators. The selection
method is a steady state tournament of size four. Homologous crossover was not used.
The population size was chosen to 3000 individuals andeach experiment was run for1000
generation equivalents. Each system performed 10 runs on the problem and the average of
the 10 runs was plotted. Figure 6.10 shows the average over 10 runs of the best individual
fitness for the two systems. The tree–based system starts out with a sharper drop in fitness
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Figure 6.10
Comparison of fitness of the best individual with a tree and register based GP system over 1000
generation equivalents. Fitness is averaged over 10 runs from each system

but at generation 180 the register based system has a better fitness. The average of best
fitness at termination after 1000 generation equivalents is 657.9 for the tree–based GP and
450.9 for register based GP. This means that the average fitness advantage is 31% in favour
of the register based system2.

2One of the ten runs of the register machine GP system found a perfect scoring individual while this was not
the case for the tree–based GP system in our 10 test runs.
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Figure 6.11
Fitness evolution of the best performing individual

The results indicate that the register language GP (used in AIM-GP) does not start in a
hole in a speed comparison with a tree–based GP system. Instead the results indicate that
the register language GP paradigm could have advantages notwithstanding its implementa-
tion advantages. The reason for a better performance on a per generation basis could be the
possibility of a more compact representation and the reuse of calculated values, which in
some sense is similar to an ADF. The representation could also be considered more com-
plete with more of a graph structure than a tree structure. One can also note that the average
fitness in figure 6.10 starts off slightly lower for the register system then for the tree system
which could indicate that the register representation is easier to search by random search.
This could be due to a more complex behavior of simple and short individuals.

6.7 Future Work

Many of the AIM-GP techniques currently in use are proven in practical applications but
more thorough evaluations are planned. In the same way do the new additions open up
completely new possibilities in several application areas:

� The introduction of blocks improves portabilityand we plan to exploit this by porting
the system to embedded processors. Programming very complex tasks e.g. speech
recognition is difficult to do in machine code with limited hardware resources. While
AIM-GP has proven that it can evolve efficient solutions (as efficient short machine



code programs) to such hard problems [Conrads et.al., (1998)]. Applied in a an
inexpensive embedded processor such as the PIC, it could have many commercially
applications.

� AIM-GP has previously been used in control domains such as on-line control on
autonomous robots. We have started work which will extend this domain to more
complex walking robots. Autonomous robots need high processing capabilities in
compact memory space and AIM-GP is therefore well suited for on-board learning.

� GP differs from other evolutionary techniques and other “soft-computing” tech-
niques in that it produces symbolic information (e.g. computer programs) as out-
put. It can also process symbolic information as input very efficiently. Despite this
unique strength genetic programming has so far been applied mostly in numerical or
Boolean problem domains. We plan to evaluate the use of machine code evolution
for text data mining of e.g. the Internet.

Other potential applications for AIM-GP are in special processors, such as:

� Video processing chips, compression, decompression (e.g. MPEG), blitter chips

� Signal processors

� Processors for special languages, for example, LISP-processors and data flow pro-
cessors

� New processor architectures with very large instruction sizes

� Parallel vector processors

� Low power processors for example 4-bit processors in watches and cameras

� Special hardware, e.g. in network switching

6.8 Summary and Conclusion

We have presented additions to the AIM-GP making the approach more portable and en-
abling its use with CICS processors. Additions consists of blocks and annotations which
enable safe use of genetic operators despite varying length instructions. Using CICS are
important both for applications using PCs and applications in embedded systems. Other
benefits with CICS are the large number of instructions in the instruction set increasing the
likelihood that the instructions needed for a specific application can be found. Complex in-
structions include LOOP instructions and special instructions for string manipulation. The
use of the FPU further expands the directly possible instruction set by inclusion of impor-
tant mathematical functions such asSIN;COS; TAN;ATN; SQRT;LN;LOG;ABS;EXP



etc. All these additions are important for the practical applicability of one of the fastest
methods for Genetic Programming.
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