

 1

White Paper

Discipulus™ Linear-Genetic-Programming Software:
How it Works

F.D.Francone--Chalmers University of Technology and RML Technologies, Inc., Email:

ffrancone@aimlearning.com

Introduction

This paper describes the workings of Discipulus Linear-Genetic-Programming
software at a high-level. For a detailed, low-level discussion of evolution of ma-
chine code, see [20].

 Some of the features in Discipulus that contribute to its extraordinary perform-
ance [3, 4, 5, 6, 9] are:

• Discipulus implements a Genetic Programming algorithm. This algorithm
determines the appropriate functional form and optimizes the parameters of
the function. It is an ideal algorithm for complex, noisy, poorly understood
domains.

• Discipulus performs Genetic Programming thru direct manipulation of bi-
nary machine code. This makes Discipulus about sixty to two-hundred times
faster than comparable automated learning approaches [10].

• Discipulus performs multi-run Genetic Programming, intelligently adapting
its own parameters to the problem at hand.

 Each of these capabilities of Discipulus are discussed below.

Genetic Programming

Genetic Programming (GP) is the automatic, computerized creation of computer
programs to perform a selected task using Darwinian natural selection. GP devel-
opers give their computers examples of how they want the computer to perform a
task. GP software then writes a computer program that performs the task described
by the examples.
 GP is a robust, dynamic, and quickly growing discipline. It has been applied to
diverse problems with great success—equaling or exceeding the best human-
created solutions to many difficult problems [11,3,4,2]. Good, detailed treatments
of Genetic Programming may be found in [2,11].

Discipulus™ [18] is a linear-genetic-programming (LGP) software package
that operates directly on machine code. The LGP algorithm in Discipulus is sur-
prisingly simple. It starts with a population of randomly generated computer pro-

 2

grams. These programs are the “primordial soup” on which computerized evolu-
tion operates. Then, GP conducts a “tournament” by selecting four programs from
the population—also at random—and measures how well each of the four pro-
grams performs the task designated by the GP developer. The two programs that
perform the task best “win” the tournament.

The GP algorithm then copies the two winner programs and transforms these
copies into two new programs via crossover and mutation transformation opera-
tors—in short, the winners have “children.” These two new child programs are
then inserted into the population of programs, replacing the two loser programs
from the tournament. GP repeats these simple steps over and over until it has writ-
ten a program that performs the selected task.

GP creates its “child” programs by transforming the tournament winning pro-
grams. The transformations used are inspired by biology. For example, the GP
mutation operator transforms a tournament winner by changing it randomly—the
mutation operator might change an addition instruction in a tournament winner to
a multiplication instruction. Likewise, the GP crossover operator causes instruc-
tions from the two tournament winning programs to be swapped—in essence, an
exchange of genetic material between the winners. GP crossover is inspired by the
exchange of genetic material that occurs in sexual reproduction in biology.

Genetic Programming using Direct Manipulation of Binary
Machine Code

Machine-code-based, LGP is the direct evolution of binary machine code through
GP techniques [12-17]. Thus, an evolved LGP program is a sequence of binary
machine instructions. For example, an evolved LGP program might be comprised
of a sequence of four, 32-bit machine instructions. When executed, those four in-
structions would cause the central processing unit (CPU) to perform operations on
the CPU’s hardware registers. Here is an example of a simple, four-instruction
LGP program that uses three hardware registers:

 register 2 = register 1 + register 2
 register 3 = register 1 - 64
 register 3 = register 2 * register 3
 register 3 = register 2 / register 3

While LGP programs are apparently very simple, it is actually possible to
evolve functions of great complexity using only simple arithmetic functions on a
register machine [15,17].

After completing a machine-code LGP project, the LGP software decompiles
the best evolved models from machine code into Java, ANSI C, or Intel Assembler
programs [18]. The resulting decompiled code may be linked to the optimizer and
compiled or it may be compiled into a DLL or COM object and called from the
optimization routines.

 3

The linear machine code approach to GP has been documented to be between
60 to 200 times faster than comparable interpreting systems [10,12,17]. As will be
developed in more detail in the next section, this enhanced speed may be used to
conduct a more intensive search of the solution space by performing more and
longer runs.

Multiple-Run Genetic Programming

Discipulus is a multiple-run genetic-programming system. That is, it is designed to
intelligently perform many runs. While doing so, it intelligently adapts its parame-
ters to the problem at hand.
 The importance of multi-run genetic-programming derives from the fact that
genetic-programming is a stochastic algorithm. Accordingly, running it over-and-
over with the same inputs usually produces a wide range of results, ranging from
very bad to very good. For example, Fig. 2 shows the distribution of the results
from 30 runs of LGP on the incinerator plant modeling problem mentioned in the
introduction—the R2 value is used to measure the quality of the solution. The so-
lutions ranged from a very poor R2 of 0.05 to an excellent R2 of 0.95.

Our investigation to date strongly suggests the typical GP distribution of results

from multiple GP runs includes a distributional tail of excellent solutions that is
not always duplicated by other learning algorithms. For example, for three sepa-
rate problem domains, an GP system produced a long tail of outstanding solutions,
even though the average GP solution was not necessarily very good. By way of
contrast, and in that same study, the distribution of many neural networks runs on
the same problems often produced a good average solution, but did not produce a
tail of outstanding solutions like GP [8.4].

Fig. 1. . Incinerator Con-
trol Data. Histogram of
Results for 30 LGP Runs

 4

Figure 3 shows a comparative histogram of LGP results versus neural network

results derived from 720 runs of each algorithm on the same problem. Better solu-
tions appear to the right of the chart. Note the tail of good LGP solutions (the bars)
that is not duplicated by a comparable tail of good neural network solutions. This
same pattern may be found in other problem domains [id].

To locate the tail of best solutions on the right of Figure 3, it is essential to per-

form many runs, regardless whether the researcher is using neural networks or
LGP. This is one of the most important reasons why a machine-code approach to
GP is preferable to other approaches. It is so much faster than other approaches,
that it is possible to complete many runs in realistic time frames on a desktop
computer. That makes it more capable of finding the programs in the good tail of
the distribution.

References

1. Bäck and Schwefel (1993) Black, T. and Schwefel, H.P., 1993. An Overview of Evolu-
tionary Algorithms for Parameter Optimization, Evolutionary Computation, 1(1): pp.
1-23, 1993.

2. Banzhaf, W., Nordin, P., Keller, R., Francone, F. (1998) Genetic Programming, An In-
troduction, Morgan Kauffman Publishers, Inc., San Francisco, CA.

3. Deschaine, L.M., (2000) Tackling real-world environmental challenges with linear ge-
netic programming. PCAI Magazine, Volume 15, Number 5, September/October, pp.
35-37.

4. Deschaine, L.M., Patel, J.J., Guthrie, R.G., Grumski, J.T., and Ades, M.J. (2001) “Using
Linear Genetic Programming to Develop a C/C++ Simulation Model of a Waste Incin-
erator,” The Society for Modeling and Simulation International: Advanced Simulation
Technology Conference, Seattle, WA, USA April, ISBN: 1-56555-238-5, pages 41-48.

5. Deschaine, L.M., Hoover, R.A. Skibinski, J. (2002) “Using Machine Learning to Com-
plement and Extend the Accuracy of UXO Discrimination Beyond the Best Reported

Fig. 2. Typical Com-
parative Histograms of
the Quality of Solutions
Produced by LGP Runs
(bars) and Neural Net-
work Runs (lines). Dis-
cussed in detail in [8]

Better Solutions

 5

Results at the Jefferson Proving Grounds,” (in press), Proceedings of Society for Mod-
eling and Simulation International, April.

6. Fausett, L.V. (2000). A Neural Network Approach to Modeling a Waste Incinerator Fa-
cility, Society for Computer Simulation’s Advanced Simulation Technology Confer-
ence, Washington, DC, USA April.

7. Fogel, D.B. (1992) Evolving Artificial Intelligence. PhD thesis, University of California,
San Diego, CA.

8. Francone, F., Nordin, P., and Banzhaf. W. (1996) Benchmarking the Generalization Ca-
pabilities of a Compiling Genetic Programming System Using Sparse Data Sets, In
Koza et al. Proceedings of the First Annual Conference on Genetic Programming,
Stanford, CA.

9. Deschaine, Larry, M. & Francone, F., (2004) White Paper: Comparison of Discipulus™
Linear Genetic Programming Software with Support Vector Machines, Classification
Trees, Neural Networks and Human Experts. Available at www.aimlearning.com.

10. Fukunaga, A., Stechert, A., Mutz, D. (1998) A Genome Compiler for High Perform-
ance Genetic Programming, in Proceedings of the Third Annual Genetic Programming
Conference, pp. 86-94, Morgan Kaufman Publishers, Jet Propulsion Laboratories,
California Institute of Technology Pasadena, CA.

11. 14. Koza, J., Bennet, F., Andre, D., and Keane, M. (1999) Genetic Programming III.
Morgan Kaufman, San Francisco, CA.

12. Nordin, J.P. (1994) A Compiling Genetic Programming System that Directly Manipu-
lates the Machine Code. In Advances in Genetic Programming, K. Kinnear, Jr. (ed.),
Cambridge MA: MIT Press.

13. Nordin, J.P. (1999). Evolutionary Program Induction of Binary Machine Code and its
Applications, Krehl Verlag.

14. Nordin, J.P., Banzhaf , W. (1995). Complexity Compression and Evolution. In Proceed-
ings of Sixth International Conference of Genetic Algorithms, Morgan Kaufmann Pub-
lishers, Inc.

15. Nordin, J.P., Banzhaf, W. (1995). Evolving Turing Complete Programs for a Register
Machine with Self Modifying Code. In, Proceedings of Sixth International Conference
of Genetic Algorithms, Morgan Kaufmann Publishers, Inc.

16. Nordin, J.P., Francone, F., and Banzhaf, W. (1996) Explicitly Defined Introns and De-
structive Crossover in Genetic Programming. Advances in Genetic Programming 2, K.
Kinnear, Jr. (Editor), Cambridge MA: MIT Press.

17. Nordin, J.P., Francone, F., and Banzhaf, W. (1998) Efficient Evolution of Machine
Code for CISC Architectures Using Blocks and Homologous Crossover. In Advances
in Genetic Programming 3, MIT Press, Cambridge MA.

18. Register Machine Learning Technologies, Inc. (2002) Discipulus Users Manual, Ver-
sion 3.0. Available at www.aimlearning.com.

